
 

Introduction pag 4 
Objectives 
The objectives of this chapter are to introduce software engineering and 
to provide a framework for understanding the rest of the book. When you 
have read this chapter you will: 

1. understand what software engineering is and why it is important; 
2. understand that the development of different types of software systems may require different software 

engineering techniques; 
3. understand some ethical and professional issues that are important for software engineers; 

 
 

1. We can’t run the modern world without software. 

2. Software systems are abstract and intangible. They are not constrained by the properties of 

materials, governed by physical laws, or by manufacturing processes. 

3. There are many different types of software systems, from simple embedded systems to complex, 

worldwide information systems. 

4. There are still many reports of software projects going wrong and ‘software failures’. Software 

engineering is criticized as inadequate for modern software development. 

 
However, many of these so-called software failures are a consequence of two factors: 
 

1. Increasing demands As new software engineering techniques help us to build larger, more 
complex systems, the demands change. Systems have to be built and delivered more 
quickly; larger, even more complex systems are required; systems have to have new 
capabilities that were previously thought to be impossible. Existing software engineering methods 
cannot cope and new software engineering techniques have to be developed to meet new these 
new demands. 

2. Low expectations It is relatively easy to write computer programs without using software 
engineering methods and techniques. Many companies have drifted into software development 
as their products and services have evolved. They do not use software engineering methods 
in their everyday work. Consequently, their software is often more expensive and less 
reliable than it should be. We need better software engineering education and training to 
address this problem. 

 
History of software engineering 
The notion of ‘software engineering’ was first proposed in 1968 at a conference held to discuss what was then 
called the ‘software crisis’ (Naur and Randell, 1969).  
It became clear that individual approaches to program 
development did not scale up to large and complex software systems. These were unreliable, cost more than 
expected, and were delivered late. 
 
Throughout the 1970s and 1980s, a variety of new software engineering techniques and methods were 
developed, such as structured programming, information hiding and object-oriented development. Tools and 
standard notations were developed and are now extensively used. 
http://www.SoftwareEngineering-9.com/Web/History/ 
 
 

Software engineering is intended to support professional software development, rather 
than individual programming. 

 It includes techniques that 
 support program specification,  
design, and evolution, none of which are normally relevant for personal software development. To 

help you to get a broad view of what software engineering is about 

http://www.softwareengineering-9.com/Web/History/


 
Many people think that software is simply another word for computer programs. 

However, when we are talking about software engineering, software is not just the programs 
themselves but also all associated documentation and configuration data that is required to make 
these programs operate correctly.  
A professionally developed software system is often more than a single program. The system 
usually consists of a number of separate programs and configuration files that are used to set up 
these programs. It may include system documentation, which describes the structure of the 
system; user documentation, which explains how to use the system, and websites for users to 
download recent product information. 

This is one of the important differences between professional and amateur software 
development. If you are writing a program for yourself, no one else will use it and you don’t have to worry 
about writing program guides, documenting the program design, etc. However, if you are writing 
software that other people will use and other engineers will change then you usually have to 
provide additional information as well as the code of the program. 
 
 
What is software? Computer programs and associated documentation. 

Software products may be developed for a particular  

customer or may be developed for a general market. 

 

What are the attributes of good software? Good software should deliver the required functionality and 

performance to the user and should be maintainable, 

dependable, and usable. 

 

What is software engineering? Software engineering is an engineering discipline that is 

concerned with all aspects of software production. 

 

What are the fundamental software engineering 

activities? 

 

Software specification, software development, software 

validation, and software evolution. 

 

What is the difference between software 

engineering and computer science? 

 

Computer science focuses on theory and fundamentals; 

software engineering is concerned with the practicalities of 

developing and delivering useful software. 

 

What is the difference between software 

engineering and system engineering? 

 

System engineering is concerned with all aspects of 

computer-based systems development including hardware, 

software, and process engineering. Software engineering is 

part of this more general process. 

 

What are the key challenges facing software 

engineering? 

 

Coping with increasing diversity, demands for reduced 

delivery times, and developing trustworthy software. 

 



What are the costs of software engineering? Roughly 60% of software costs are development costs; 40% 

are testing costs. For custom software, evolution costs often 

exceed development costs. 

 

What are the best software engineering techniques 

and methods? 

 

While all software projects have to be professionallymanaged 

and developed, different techniques are appropriate for 

different types of system. For example, games should always 

be developed using a series of prototypes whereas safety 

critical control systems require a complete and analyzable 

specification to be developed. You can’t, therefore, say that 

one method is better than another. 

 

What differences has the Web made to software 

engineering? 

 

The Web has led to the availability of software services and 

the possibility of developing highly distributed service-based 

systems. Web-based systems development has led to 

important advances in programming languages and software 

reuse. 

 

 

Ce este software-ul? Programe de calculator și documentație asociată. 
Produsele software pot fi dezvoltate pentru un 
anumit client sau pot fi dezvoltate pentru o piață 
generală. 

Care sunt atributele unui software bun? Un software bun ar trebui să ofere utilizatorului 
funcționalitatea și performanțele necesare și ar 
trebui să fie întreținibil, fiabil și utilizabil. Ingineria 
software este o disciplină de inginerie care se 
ocupă de toate aspectele producției de software. 

Care sunt activitățile fundamentale ale ingineriei 

software? 
 

Specificații software, dezvoltare software, 
validare software și evoluție software. 

Care este diferența dintre software 
inginerie și informatică? 

Informatica se concentrează pe teorie și 
elemente fundamentale; ingineria software este 
preocupată de practicile dezvoltării și livrării de 
software utile. 

Care este diferența dintre software 
inginerie și inginerie de sisteme? 

Ingineria de sistem este preocupată de toate 
aspectele dezvoltării sistemelor bazate pe 
computer, inclusiv hardware, software și inginerie 
de procese. Ingineria de software face parte din 
acest proces mai general. 

Care sunt provocările cheie cu care se confruntă 
Inginerie  software-ul 
? 

Faceți față diversității în creștere, cerințelor de 
timpi de livrare reduse și dezvoltării unui software 
de încredere. 

Care sunt costurile ingineriei software? Aproximativ 60% din costurile software sunt 
costuri de dezvoltare; 40% sunt costuri de 
testare. Pentru software personalizat, costurile de 
evoluție depășesc adesea costurile de 
dezvoltare. 

Care sunt cele mai bune tehnici de inginerie și 

metode software? 

În timp ce toate proiectele software trebuie 
gestionate și dezvoltate profesional, diferite 
tehnici sunt adecvate pentru diferite tipuri de 
sisteme. De exemplu, jocurile ar trebui dezvoltate 



întotdeauna folosind o serie de prototipuri, în 
special sistemele de control critice în materie de 
siguranță necesită o specificație completă și 
analizabilă. Prin urmare, nu pot spune că o 
metodă este mai bună decât alta 

Ce diferențe a făcut Web-ul față de software 
Inginerie? 

Web-ul a condus la disponibilitatea serviciilor 
software și la posibilitatea dezvoltării sistemelor 
bazate pe servicii foarte distribuite. Dezvoltarea 
sistemelor bazate pe web a dus la progrese 
importante în limbaje de programare și 
reutilizarea software-ului. 

  

 
 
There are two kinds of software products: 
 

1. Generic products These are stand-alone systems that are produced by a development 
organization and sold on the open market to any customer who is able to buy them. 
Examples of this type of product include software for PCs such as databases, word processors, 
drawing packages, and project-management tools. It also includes so-called vertical applications 
designed for some specific purpose such as library information systems, accounting systems, or 
systems for maintaining dental records. 

2.  Customized (or bespoke) products These are systems that are commissioned by  a particular 
customer. A software contractor develops the software especially for that customer. Examples 
of this type of software include control systems for electronic devices, systems written to support 
a particular business process, and air traffic control systems. 

 
 
An important difference between these types of software is that,  
 

- In generic products, the organization that develops the software controls the software 
specification.  

- For custom products, the specification is usually developed and controlled by the organization 
that is buying the software. The software developers must work to that specification. 
 

However, the distinction between these system product types is becoming  increasingly blurred. More 
and more systems are now being built with a generic  product as a base, which is then adapted to 
suit the requirements of a customer. Enterprise Resource Planning (ERP) systems, such as the 
SAP system, are the best examples of this approach. Here, a large and complex system is adapted for a 
company by incorporating information about business rules and processes, reports required, and so on. 
 
The specific set of attributes that you might expect from a software system obviously 
depends on its application.  
Therefore, a banking system must be secure, an 
interactive game must be responsive, a telephone switching system must be reliable, 
and so on.  
These can be generalized into the set of attributes shown in the table below, 
which I believe are the essential characteristics of a professional software system. 
 
Maintainability Software should be written in such a way so that it can evolve to meet the changing needs of 

customers. This is a critical attribute  because software change is an inevitable requirement of a 

changing business environment. 

 

Dependability and security Software dependability includes a range of characteristics including reliability, security, and 



safety. Dependable software should not cause physical or economic damage in the event of 

system failure. Malicious users should not be able to access or damage the system. 

 

Efficiency Software should not make wasteful use of system resources such as memory and processor 

cycles. Efficiency therefore includes responsiveness, processing time, memory utilization, etc. 

 

Acceptability Software must be acceptable to the type of users for which it is designed. This means that it 

must be understandable, usable, and compatible with other systems that they use. 

 

  

  

Mentenabilitate Software-ul trebuie scris astfel încât să poată evolua 
pentru a satisface nevoile în schimbare ale clienților. 
Acesta este un atribut critic, deoarece schimbarea 
software-ului este o cerință inevitabilă a unui mediu de 
afaceri în schimbare. 

Fiabilitate și securitate Fiabilitatea software-ului include o serie de caracteristici, 
inclusiv fiabilitate, securitate și siguranță. Software-ul de 
încredere nu ar trebui să provoace daune fizice sau 
economice în caz de defecțiune a sistemului. Utilizatorii 
rău intenționați nu ar trebui să poată accesa sau deteriora 
sistemul. 

Eficiența Software-ului nu ar trebui să utilizeze risipă resursele 
sistemului, cum ar fi ciclurile de memorie și procesor. 
Prin urmare, eficiența include reacția, timpul de 
procesare, utilizarea memoriei etc. 

Acceptabilitate Software-ul trebuie să fie acceptabil pentru tipul de 
utilizatori pentru care este proiectat. Aceasta înseamnă 
că trebuie să fie de înțeles, utilizabil și compatibil cu alte 
sisteme pe care le utilizează. 

 
 

Software engineering 
 
Software engineering is an engineering discipline that is concerned with all aspects of software 
production from the early stages of system specification through to maintaining the system after it has 
gone into use. In this definition, there are two key phrases: 

1. Engineering discipline Engineers make things work. They apply theories, methods, and 
tools where these are appropriate. However, they use them selectively and always try to 
discover solutions to problems even when there are no applicable theories and methods. 
Engineers also recognize that they must work to organizational and financial constraints so 
they look for solutions within these constraints. 

2. All aspects of software production Software engineering is not just concerned with the 
technical processes of software development. It also includes activities such as software 
project management and the development of tools, methods,  and theories to support 
software production. 

 

 
 

Ingineria software este o disciplină de inginerie care se ocupă de toate aspectele producției de 
software, de la primele etape ale specificațiilor sistemului până la menținerea sistemului după ce a 
intrat în uz. 



 În această definiție, există două fraze cheie: 
1. Disciplina de inginerie Inginerii fac lucrurile să funcționeze.  
Aplică teorii, metode și instrumente acolo unde acestea sunt adecvate. Cu toate acestea, le folosesc 
selectiv și încearcă întotdeauna să descopere soluții la probleme chiar și atunci când nu există teorii și 
metode aplicabile. Inginerii recunosc, de asemenea, că trebuie să lucreze la constrângerile 
organizaționale și financiare, astfel încât să caute soluții în cadrul acestor constrângeri. 
2. Toate aspectele producției de software Ingineria software-ului nu se referă doar la procesele tehnice 
de dezvoltare a software-ului, ci include activități precum gestionarea proiectelor software și dezvoltarea 
de instrumente, metode și teorii pentru a sprijini producția de software. 
 
Software engineering is important for two reasons: 

1.  More and more, individuals and society rely on advanced software systems. We need to be 
able to produce reliable and trustworthy systems economically and quickly. 

2. It is usually cheaper, in the long run, to use software engineering methods and techniques for 
software systems rather than just write the programs as if it was a personal programming 
project. For most types of systems, the majority of costs are the costs of changing the 
software after it has gone into use!!!!!!!!! 

 
 
There are four fundamental activities that are common to all software processes. These activities 
are: 
 

1. Software specification, where customers and engineers define the software that is to be 
produced and the constraints on its operation. 

2.  Software development, where the software is designed and programmed. 
3.  Software validation, where the software is checked to ensure that it is what the customer 

requires. 
4. Software evolution, where the software is modified to reflect changing customer and market 

requirements. 
 

There are many different types of software. There is no universal 

software engineering method or technique that is applicable for all of these. 
However, there are three general issues that affect many different types of software: 
 

1. Heterogeneity (nivel inalt de diversitate) Increasingly, systems are required to operate as 
distributed systems across networks that include different types of computer and mobile 
devices. Aswell as running on general-purpose computers, software may also have to 
executeon mobile phones. You often have to integrate new software with older legacy 
systems written in different programming languages. The challenge here is to develop 
techniques for building dependable software that is flexible enough to cope withthis 
heterogeneity. 

2. Business and social change Business and society are changing incredibly quickly as 
emerging economies develop and new technologies become available. Theyneed to be able 
to change their existing software and to rapidly develop new software. Many traditional 
software engineering techniques are time consuming and delivery of new systems often 
takes longer than planned. They need to evolve so that the time required for software to 
deliver value to its customers is reduced. 

3. Security and trust As software is intertwined with all aspects of our lives, it is essential that 
we can trust that software. This is especially true for remote software  systems accessed 
through a web page or web service interface. We have to make sure that malicious users 
cannot attack our software and that information security is maintained. 

 
 

Perhaps the most significant factor in determining which software engineering methods and 
techniques are most important is the type of application that is being developed.  



 
 
There are many different types of application including:  

1. Stand-alone applications These are application systems that run on a local computer, such as a 
PC. They include all necessary functionality and do not need to be connected to a network. 
Examples of such applications are office applications on a PC, CAD programs, photo manipulation 
software, etc. 

2. Interactive transaction-based applications These are applications that execute on a remote 
computer and that are accessed by users from their own PCs or terminals. Obviously, these include 
web applications such as e-commerce applications where you can interact with a remote system to 
buy goods and services. This class of application also includes business systems, where a business 
provides access to its systems through a web browser or special-purpose client program and cloud-
based services, such as mail and photo sharing. Interactive applications often incorporate a large 
data store that is accessed and updated in each transaction. 

3. Embedded control systems These are software control systems that control and manage hardware 
devices. Numerically, there are probably more embedded systems than any other type of system. 
Examples of embedded systems include the software in a mobile (cell) phone, software that controls 
anti-lock braking in a car, and software in a microwave oven to control the cooking process. 

4. Batch processing systems These are business systems that are designed to process data in large 
batches. They process large numbers of individual inputs to create corresponding outputs. Examples 
of batch systems include periodic billing systems, such as phone billing systems, and salary payment 
systems. 

5. Entertainment systems These are systems that are primarily for personal use and which are 
intended to entertain the user. Most of these systems are games of one kind or another. The quality 
of the user interaction offered is the most important distinguishing characteristic of entertainment 
systems. 

6. Systems for modeling and simulation These are systems that are developed by scientists and 
engineers to model physical processes or situations, which include many, separate, interacting 
objects. These are often computationally intensive and require high-performance parallel systems for 
execution. 

7. Data collection systems These are systems that collect data from their environment using a set of 
sensors and send that data to other systems for processing. The software has to interact with 
sensors and often is installed in a hostile environment such as inside an engine or in a remote 
location. 

8. Systems of systems These are systems that are composed of a number of other software systems. 
Some of these may be generic software products, such as a spreadsheet program. Other systems in 
the assembly may be specially written  for that environment. 

 

Nevertheless, there are software engineering fundamentals that apply to 
all types of software system: 
 

1. They should be developed using a managed and understood development process. The 
organization developing the software should plan the development process and have clear ideas 
of what will be produced and when it will be completed. Of course, different processes are used 
for different types of software. 

2. Dependability and performance are important for all types of systems. Software should behave 
as expected, without failures and should be available for use when it is required. It should be safe 
in its operation and, as far as possible, should be secure against external attack. The system 
should perform efficiently and should not waste resources. 

3. Understanding and managing the software specification and requirements (what the software 
should do) are important. You have to know what different customers and users of the system 
expect from it and you have to manage their expectations so that a useful system can be 
delivered within budget and to schedule. 



4. You should make as effective use as possible of existing resources. This means that, where 
appropriate, you should reuse software that has already been developed rather than write new 
software. 

 
 

The advent of the web, therefore, has led to a significant change in the way that business software is 
organized. Before the web, business applications were mostly monolithic, single programs running on 
single computers or computer clusters. 
Communications were local, within an organization. Now, software is highly distributed, sometimes across 
the world. Business applications are not programmed from scratch but involve extensive reuse of 
components and programs. 
This radical change in software organization has, obviously, led to changes in the ways that web-based 
systems are engineered.  

 
For example: 
 
1. Software reuse has become the dominant approach for constructing web-based systems. 

When building these systems, you think about how you can assemble them from pre-existing software 
components and systems. 

It is now generally recognized that it is impractical to specify all the requirements for such 
systems in advance. Web-based systems should be developed and delivered incrementally. 

User interfaces are constrained by the capabilities of web browsers. Although technologies such 
as AJAX (Holdener, 2008) mean that rich interfaces can be created within a web browser, these 
technologies are still difficult to use. Web forms with local scripting are more commonly used. Application 
interfaces on web-based systems are often poorer than the specially designed user interfaces on 
PC system products. 
 
 
 
 

Software engineering ethics 
 

1. Confidentiality You should normally respect the confidentiality of your employers or clients 
irrespective of whether or not a formal confidentiality agreement has been signed. 

2. Competence You should not misrepresent your level of competence. You should not knowingly 
accept work that is outside your competence. 

3. Intellectual property rights You should be aware of local laws governing the use of intellectual 
property such as patents and copyright. You should be careful to ensure that the intellectual 
property of employers and clients is protected. 

4. Computer misuse You should not use your technical skills to misuse other people’s computers. 
Computer misuse ranges from relatively trivial (game playing on an employer’s machine, say) to 
extremely serious (dissemination of viruses or other malware). 

 

Case studies 
 
To illustrate software engineering concepts,we can  use examples from three different types of 
systems. The reason why we have not used a single case study is that one of the key messages in this 
book is that software engineering practice depends on the type of systems being produced. I therefore 
choose an appropriate example when discussing concepts such as safety and dependability, system 
modeling, reuse, etc. 
 
Three types of systems that can use as case studies are: 

1. An embedded system This is a system where the software controls a hardwaredevice and is 
embedded in that device. Issues in embedded systems typically include physical size, 



responsiveness, power management, etc. The example of an embedded system that I use is a 
software system to control a medical device. 

2. An information system This is a system whose primary purpose is to manage and provide 
access to a database of information. Issues in information systems include security, usability, 
privacy, and maintaining data integrity. The example of an information system that I use is a 
medical records system. 

3. A sensor-based data collection system This is a system whose primary purpose is to collect 
data from a set of sensors and process that data in some way. The key requirements of such 
systems are reliability, even in hostile environmental conditions, and maintainability. The example 
of a data collection system that I use is a wilderness weather station. 

 

1.3.1 An insulin pump control system 
1.3.2 A patient information system for mental health care 

1.3.3 A wilderness weather station 
 
EXERCISES 
1.1. Explain why professional software is not just the programs that are developed for a customer. 
1.2. What is the most important difference between generic software product development and 
custom software development? What might this mean in practice for users of generic software 
products? 
1.3. What are the four important attributes that all professional software should have? Suggest 
four other attributes that may sometimes be significant. 
1.4. Apart from the challenges of heterogeneity, business and social change, and trust and 
security, identify other problems and challenges that software engineering is likely to face in 
the 21st century (Hint: think about the environment). 
1.5. Based on your own knowledge of some of the application types discussed in section 1.1.2, 
explain, with examples, why different application types require specialized software 
engineering techniques to support their design and development. 
1.6. Explain why there are fundamental ideas of software engineering that apply to all types of 
software systems. 
1.7. Explain how the universal use of the Web has changed software systems. 
1.8. Discuss whether professional engineers should be certified in the same way as doctors or 
lawyers. 
1.9. For each of the clauses in the ACM/IEEE Code of Ethics shown in Figure 1.3, suggest an 
appropriate example that illustrates that clause. 
1.10. To help counter terrorism, many countries are planning or have developed computer systems 
that track large numbers of their citizens and their actions. Clearly this has privacy 
implications. Discuss the ethics of working on the development of this type of system. 

 


