
Distances between Clustering, Hierarchical

Clustering

36-350, Data Mining

14 September 2009

Contents

1 Distances Between Partitions 1

2 Hierarchical clustering 2
2.1 Ward’s method . 3

2.1.1 Picking the Number of Clusters 3
2.1.2 Ward’s Method in Action 4

2.2 Single-link Clustering . 4
2.3 Complete-Link Clustering . 4

3 How Many Clusters? 4

4 Reification 8

1 Distances Between Partitions

Different clustering algorithms will give us different results on the same data.
The same clustering algorithm may give us different results on the same data,
if, like k-means, it involves some arbitrary initial condition. We would like to
say how far apart two clusterings of the same data are. In doing this, we want
to accommodate different numbers of clusters, and we want to accommodate
the fact that cluster labels are completely arbitrary, so we want to say two
clusterings are the same if they only differ by the labels.

Recall that a partition of a set divides it into subsets where are mutu-
ally exclusive (no point in the set is in more than one subset) and jointly
exhaustive (every point is in some subset). The subsets are called the cells of
the partition. When we have class labels, the classes partition the data. What
we get from a clustering procedure is another partition.

Whenever we have two partitions of the same data, we can build a confusion
matrix, just as we did for classifiers; call it A. The entry Aij is the number of
items which are in cell i of the first partition and cell j of the second partition.

1

When we did this for classifiers, the first partition was that of the true classes,
and the second partition was that of our guesses; we wanted the diagonal entries
of A to be big and the rest small, because that meant we were guessing correctly.
Two clusterings can be close, however, even if the diagonal isn’t, because the
numbering of the clusters is essentially arbitrary.

One distance measure which does what we want — which is invariant under
permutations of the cluster labels — is what’s called the variation of infor-
mation metric.1 Pick a point from the set completely at random, and let X be
the cell it falls into according to the first partition, and Y its cell in the second
partition. Then the distance is

H[X|Y] + H[Y |X] (1)

This will be zero if and only if there is a 1-1 correspondence between the cells
of the two partitions. Otherwise, it will be positive, and the larger it is, the less
information we get about one partition from the other. (Its maximum possible
value is H[X] + H[Y].)

2 Hierarchical clustering

The k-means algorithm gives us what’s sometimes called a simple or flat par-
tition, because it just gives us a single set of clusters, with no particular orga-
nization or structure within them. But it could easily be the case that some
clusters could, themselves, be closely related to other clusters, and more dis-
tantly related to others. (If we are clustering images, we might want not just
to have a cluster of flowers, but roses and marigolds within that. Or, if we’re
clustering patient medical records, we might want “respiratory complaints” as a
super-cluster of “pneumonia”, “influenza”, “SARS”, “miscellaneous sniffling”.)
So sometimes we want a hierarchical clustering, which is depicted by a tree
or dendrogram.

There are two approaches to hierarchical clustering: we can go “from the
bottom up”, grouping small clusters into larger ones, or “from the top down”,
splitting big clusters into small ones. These are called agglomerative and
divisive clusterings, respectively. We will return to divisive clustering later,
after we have tools to talk about the over-all pattern of connections among data
points. For today, we’ll stick to agglomerative clustering.

The basic algorithm is very simple:

1. Start with each point in a cluster of its own

2. Until there is only one cluster

(a) Find the closest pair of clusters

(b) Merge them

1It has many names, actually.

2

3. Return the tree of cluster-mergers

Any such procedure is greedy, like our feature-selection algorithm and deter-
ministic (no random initial conditions, unlike k-means). It returns a sequence of
nested partitions, where each level up merges two cells of the lower partition.2

To turn this into a definite procedure, though, we need to be able to say how
close two clusters are. This is not the same as how close two data points are, or
how close two partitions are. There are three basic choices, and a lot of wrinkles.

2.1 Ward’s method

Ward’s method says that the distance between two clusters, A and B, is how
much the sum of squares will increase when we merge them:

∆(A, B) =
∑

i∈A∪B

‖~xi − ~mA∪B‖2 −
∑
i∈A

‖~xi − ~mA‖2 −
∑
i∈B

‖~xi − ~mB‖2 (2)

=
nAnB

nA + nB
‖~mA − ~mB‖2 (3)

where ~mj is the center of cluster j, and nj is the number of points in it. ∆ is
called the merging cost of combining the clusters A and B.

With hierarchical clustering, the sum of squares starts out at zero (because
every point is in its own cluster) and then grows as we merge clusters. Ward’s
method keeps this growth as small as possible. This is nice if you believe that
the sum of squares should be small. Notice that the number of points shows up
in ∆, as well as their geometric separation. Given two pairs of clusters whose
centers are equally far apart, Ward’s method will prefer to merge the smaller
ones.

Ward’s method is both greedy, and constrained by previous choices as to
which clusters to form. This means its sum-of-squares for a given number k of
clusters is usually larger than the minimum for that k, and even larger than what
k-means will achieve. If this is bothersome for your application, one common
trick is use hierarchical clustering to pick k (see below), and then run k-means
starting from the clusters found by Ward’s method to reduce the sum of squares
from a good starting point.

2.1.1 Picking the Number of Clusters

The k-means algorithm gives no guidance about what k should be. Ward’s
algorithm, on the other hand, can give us a hint through the merging cost. If
the cost of merging increases a lot, it’s probably going too far, and losing a lot
of structure. So a rule of thumb is to keep reducing k until the cost jumps, and
then use the k right before the jump. Of course this leaves you to decide how
big a merging cost is acceptable, and there’s no theory whatsoever to say that

2We say that one partition is finer than another, or is a refinement of it, if every
cell of the finer partition is contained within some cell of the coarser partition.
Hierarchical clustering gives us a sequence of increasingly fine partitions.

3

this will often or even usually lead to good choices, but it does make a kind of
sense.

Of course, the same rule of thumb can be applied to other hierarchical clus-
tering techniques: pick the k just before the merging cost takes off.

2.1.2 Ward’s Method in Action

Figure 1 shows what Ward’s method does with the flower/tiger/ocean images
(represented, as usual, by bags of colors). This makes one clear mistake (it
thinks flower5 goes with the tigers rather than the other flowers), but otherwise
looks reasonable. The merging costs (Figure 2.1.2 suggest that there are 3
clusters (or perhaps 6 or 8).

The sum of squares measures distance equally in all directions, so it wants
the clusters to be round. This is not always very sensible (see Figure 2).

2.2 Single-link Clustering

Single-link clustering defines the distance between two clusters as the minimum
distance between their members:

d(A, B) ≡ min
~x∈A,~y∈B

‖~x− ~y‖ (4)

It’s called “single link” because it says clusters are close if they have even a
single pair of close points, a single “link”. This can handle quite complicated
cluster shapes.

This algorithm only wants separation, and doesn’t care about compactness
or balance. This can lead to new problems, as shown in Figure 3.

Question: how is the single-link method like nearest neighbor classification?
If k-means is the like the unsupervised version of the prototype method, what
would the unsupervised version of nearest neighbors be like?

2.3 Complete-Link Clustering

The last of the three most common techniques is complete-link clustering,
where the distance between clusters is the maximum distance between their
members.

d(A, B) ≡ max
~x∈A,~y∈B

‖~x− ~y‖ (5)

Again, there are situations where this seems to work well and others where
it fails.

3 How Many Clusters?

This is a crucial question. The heuristic for merging costs is just that, a heuristic.
One reason you should be intensely skeptical of clustering results — including
your own! — is that there is currently very little theory about how to find the

4

 gray32

 orchid3

 darkmagenta
 flower2

 flower3

 orchid3
 flower6

 orchid3
 flower7

 flower8

 gray59.2
 flower9

 plum4
 flower1

 flower4

 midnightblue

 gray10

 gray36
 tiger7

 burlywood2
 tiger3

 tiger5

 darkseagreen4
 flower5

 antiquewhite2
 tiger6

 darkseagreen4

 darkseagreen4
 tiger8

 tiger9

 lightgoldenrod3
 tiger4

 gray10
 tiger1

 tiger2

 darkslategray.2

 darkslategray.2
 ocean3

 ocean7

 lightskyblue3

 azure3
 ocean2

 ocean4

 royalblue
 ocean5

 royalblue
 ocean1

 ocean6

Figure 1: Using Ward’s method to form a hierarchical clustering of the
flower/tiger/ocean pictures. Each cluster is labeled with the name of a color
which was common to both sub-groups but rare in the rest of the data — i.e.
the color is informative about sub-cluster membership.

5

2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

clusters

m
er

gi
ng

 c
os

t

right number of clusters. It’s not even completely clear what “the right number
of clusters” means!

At one extreme, we could put every data point in its own cluster. Then the
clusters would be perfectly informative about the data. The downsides to this
are that (1) it makes cluster analysis pointless, and (2) the clusters will not help
us with new data-points. At the other extreme we could always decide that all
our data points really form one cluster, which might look weirdly irregular and
have an oddly lumpy distribution on it, at least as we’ve chosen to represent it.
This is sometimes even right, or at least sounds right!

Some people try to get around this by modifying the objective function used
in clustering, to add some penalty per cluster, or per level of hierarchy, etc. The
idea is to encourage parsimony, as discussed last time. The difficulty is that
these penalties are generally things pull out of (to be polite) the air, and there
is no reason to think that they really do give us good clusters in general.

In general, statisticians like to decide how complex to make their models by
looking at their ability to predict. The line of thinking is that models which
are too simple will predict badly because they just can’t match the data, and
models which are too complicated will also predict badly, because they’ll match
the noisy, accidental parts with no predictive power. There is a lot of truth to
this story, though as we’ll see it needs to be treated with a bit of care. What
is important about it, however, is that prediction has to be of data other than
what we used to create the model; otherwise we can always predict better by
just adding more complexity. In other words, we want models which generalize
to new data.

As far as clustering goes, then, the right number of clusters is the one which
generalizes best to new data. If the data really do fall into k clusters, then more

6

k-means Ward Single-link

Figure 2: Some clustering problems where the single-link method does better
than k-means or Ward’s method. (In the k-means plots, the cluster means are
marked ×.)

data from the same source should fall into the same clusters (up to sampling
noise). There are multiple ways we could measure this:

• how much do cluster centers or boundaries move if we re-run clustering
on new data?

• how much do cluster assignments change, ditto?

• how big are the sum-of-squares, when assigning new data to the old clus-
ters?

• what’s the metric distance between old and new clusterings?

Of course, to do any of these things we would need new data. Instead of
waiting to get new data, we could fake it by re-using some of the data we
already have. The general idea of cross-validation is to divide the data into
a training set and a testing set, and use performance on the testing set as
a proxy for performance on genuinely new data. Repeated many times, over
many divisions, this often gives a reasonable sense of how sensitive our results
are to sampling accidents, and how well they generalize to new data from the
same source. In the homework, you used “leave-one-out” cross-validation to
evaluate classifiers; we will see many variations on this later.

7

k-means Ward Single-link

Figure 3: Some cases where k-means or Ward’s algorithm does better than the
single-link method.

The difficulty, however, with applying this idea to clustering is that all our
clustering techniques are only very weakly predictive at best. Even k-means,
for instance, doesn’t really say how far points in a cluster have to be from its
center, though we can and should get suspicious if when we add a new point it is
much further from the old center than the old points are. To put it another way,
none of our clustering procedures gives us a model which would let us generate
or simulate new data points (“synthetic data” or “surrogate data”). We will
later see various forms of cluster analysis which do use generative models, and
while they are more work it is actually clearer what they mean, and how to tell
if they are working.

A distinct but related question from how many clusters we should use is how
confident we should be about the statement “these two data points belong to
the same cluster”. A first cut would be to do cross-validation and see how often
the points in question wind up in the same cluster. A more refined approach
doesn’t seem to be possible unless you add some assumptions about the data-
generating process. Prof. Nugent has worked on the issue of “clustering with
confidence”, and I encourage those of you taking 36-401 from her to ask her
about it.

4 Reification

A perennial issue with cluster analysis is how seriously to treat the clusters we
get. (This issue is of course linked to picking the best number of clusters.) At
one extreme we can regard them as pure fictions, merely more-or-less convenient
ways of summarizing some parts of the data, with no other meaning. At the

8

other end we can insist that they reflect real divisions of the world into distinct
types. This is an instance of the general problem of how seriously to take our
theoretical constructs — of when and whether they should be reified, made into
things. This is especially tempting once we have attached meaningful names to
clusters (as opposed to just calling them “cluster 1”, “cluster 2”, . . . “cluster
k”).

On the one hand, there are some theoretical constructs which it is absurd
not to believe are real: germs and atoms, for instance. On the other hand,
we do not think that constellations have any reality or meaning beyond giving
convenient ways of dividing up the sky.3 How can we tell when our clusters are
more like bacteria and when they are more like the signs of the zodiac?

A full answer is beyond the scope of this class (not least because nobody
has a full answer). I can however point to three things which seem more or less
compelling.

1. Good clusters should generalize well. We talked about this above; to reca-
pitulate briefly, the clusters should continue to describe new observations
of the same features.

2. Good clusters should generalize to new features. Knowing someone’s as-
trological sign predicts nothing else about them. On other hand, if we
identify a bird’s species from its bodily shape, that predicts many other
attributes: its coloration, its song, when it mates, whether and where
it migrates, what it eats, its genome, etc. Bird species, then, is a good
cluster.

3. Good clusters should fit into a theory, they should be a part of a valid
system of generalizations which lets us make predictions about new con-
ditions, and explains why things turn out the way they do.

The first of these seems like a basic requirement before we should even bother
with a clustering. The second is considerably stricter, but it needs to be dealt
with cautiously, since clusters don’t have to be relevant for everything in order
to be valid. Finally, while being part of a well-established theory is a great
thing, it’s honestly pretty rare in most situations where people think to look for
clusters in the first place.

The lack of good theoretical checks, of course, also makes it all the more
tempting to reify clusters. Paul (2004) provides an entertain account of how
psychologists have embraced this temptation when it comes to personality types,
and I strongly encourage you to read it. Demographics, especially as applied
to politics and marketing, is another prime offender. You should look at both
http://yawyl.claritas.com and http://www.inthesetimes.com/article/
3320/trending_towards_inanity/; for the former your job is to figure out
what they are doing, and for the latter to figure out what Penn is doing and
avoid it.

3Of course for thousands of years all the most learned people in the world thought otherwise.

9

http://yawyl.claritas.com
http://www.inthesetimes.com/article/3320/trending_towards_inanity/
http://www.inthesetimes.com/article/3320/trending_towards_inanity/

References

Paul, Annie Murphy (2004). The Cult of Personality: How Personality Tests
Are Leading Us to Miseducate Our Children, Mismanage Our Companies, and
Misunderstand Ourselves. New York: Free Press.

10

	Distances Between Partitions
	Hierarchical clustering
	Ward's method
	Picking the Number of Clusters
	Ward's Method in Action

	Single-link Clustering
	Complete-Link Clustering

	How Many Clusters?
	Reification

