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*SECTION 4.5

COSTNET to compute minimum expected driving times between pairs of
stores of the chain. Then determine the total minimum driving time accessi-
bility index for each store by adding the lowest driving times to all the other
stores in the netwark. Rank-order the 18 outlets accordingly. Compare this
with the rank ordering obtained previously. Has your recommendation as to
where to locate the central distribution point and office complex changed?

“29¢< Repeat Exercise 28, assuming that a traffic artery joining outlets 2 and 8 has
been completed and has an average driving time of 10 minutes. Compare with
the results of Exercise 19 of Vignette 4.2.

CLUSTER ANALYSIS

Cluster analysis seeks to infer homogeneous groupings of objects from a
measure of the “alikeness,” or “‘similarity,” between pairs of the objects.
Here are two situations in which this problem arises.

A corporation’s legal department must decide whether to contest an
antitrust suit through a judicial system. Or a special interest lobby wants to
formulate a strategy for influencing votes to be taken by a legislative body.
In both cases, it would be helpful to have an idea of the nature of voting
blocks, or “clusters,” in the group under study, that is, subsets of the group
that tend to vote the same way on issues. Now, it is likely that a measure of
the similarity of pairs of individuals is readily available, for example, the
percentages of times that pairs have voted the same way in the past. Thus,
the issue of how to infer voting blocks from such pairwise information
becomes relevant.

In the business world, a common marketing problem is that a company’s
product is perceived as being interchangeable with those of certain of its
competitors. As a strategy for strengthening customer loyalty, a company
might reasonably decide to launch an advertising campaign designed to
distinguish its product from those sharing the same “customer indiffer-
ence’” group. Note that data regarding pairwise similarity between prod-
ucts could be obtained by doing a market research study in which respon-
dents are asked to rate the alikeness of each pair on some scale, say, u
5-point scale ranging from 1 (very unalike) to 5 (highly alike). The ques-
tion, then, is how to infer clusters of similarly perceived products from such
pairwise data.

In this section we develop several common clustering schemes, that is,
schemes for classifying objects into homogeneous groups, or clusters, on
the basis of a given numerical measure of similarity among pairs of the
objects. Clustering techniques have found use in many disciplines. In fact,
much of the initial work in this area was carried out by biological scientists
interested in classification schemes. References to applications in biology,
business, ecology, geology, and medicine can be found in the introduction
of an article by Janowitz {1978]. Also, see Green and Tull [1978} or
Hartigan [1975].

TABLE 4.11

EXAMPLE 1

“LUSIER mrALTIES  Zu T

Percentage-Based Similarity Measure on 1962-1963 Term of the U.S.
Supreme Court. (Legend: Bk, Black; Bn, Brennan; Ck, Clark; Dg, Douglas;
Gd, Goldberg; Hn, Harlan; St, Stewart; Wn, Warren; Wi, Whity

Bk Bn Ck Dg Gd  Hn St Wn Wi

Bk W oo 2 72 23 39 BE 60
B B 60 FO EE 30 40 WY 67
ck |60 60 46 53 60 68 61 @
Dg (72 FE 46 B 16 39 FEE 54
cd |72 BE 53 B 37 60 HE e
Hn (23 30 60 16 37 70 28 58
st [39 49 68 39 60 70 47 70
wa |B# UE 6l N¥E BB 28 47 65

wt |60 67 ¥E 54 61 58 70 65

A graph-theoretic approach to selecting clusters of Supreme Court justices

The matrix § in Table 4.11 specifies the aforementioned percentage-based
pairwise agreement for the 57 split decisions rendered by the 1962 - 1963
term of the U.S. Supreme Court. Since agreement between Justices Gold-
berg and Douglas was 75 percent while that between Harlan and Warren
was only 28 percent, the first is regarded as the more similar pair.

Now suppose we decide to identify those pairs of justices that exhibited
at least 75 percent agreement. This can be done by locating those entries of
the similarity measure § for which [S]y = 75 (shaded entries in Table 4.11).
A natural device for displaying this information is the graph ;5 shown in
Figure 4.264, where an edge or a link joins two nodes (justices) if and only
if their level of agreement was at least 75 percent. One clustering strategy
suggested by this graph is to take as clusters the node sets of components of
8.5, namely,

(Bk,Bn,Dg,Gd,Wn}  (Ck,Wt) (St}  (Hn}

As another illustration of this approach, suppose we relax the criterion for
linking pairs of justices from 75 to 70 percent agreement. From the
resulting graph §;, (Figure 4.26b) we find the clusters {components of ¢,,)
are

{Bk,Bn,Dg,Gd,Wn)  (Ck,Wt,Hn,St} .

Formally, a similarity measure on a finite object set © of size n is an
n-by-n matrix S that is symmetric {that is, [S]ly = [S],) and has unspecified
main diagonal entries. The ijth entry of § is interpreted as the similarity
between the distinct pair of objects in @ that label the ith row and jth
column of §. Larger entries of § denote more similar pairs. Given a





image2.jpeg
EXAMPLE 2

O TMEHD O WA

" 24 42 13 20 38 19 22

13 15 14 23 14 21 23
120 39 31 23 28 43 38
38 30 40 14 28 31 28
19 32 23 21 43 31 4.1

() (b}

Figure 4.26 Graphs corresponding to 75 and 70 percent similarity levels for
1962 - 63 term of the U.S. Supreme Court.

similarity measure § on an object set @ and given any fixed number a, we
define the graph 8, on @ to have an edge joining objects i andjifand only if
their similarity is at least a (that is, [S}; = «). The clustering scheme
illustrated in Example 1 where clusters are taken to be the components of 8,
is called a-level single-linkage cluster analysis.

Any two objects residing in an a-level cluster must be joined by a path in
¢, but, as frequently happens, need not be joined by an edge in 9,. That is,
their pairwise similarity may be less than a. For example, within the 70-
level cluster (Ck,Wt,St.Hn} of Example 1, Ck —71— Wt —T0_ St 20 Hn,
vet, [Slorzm = 60 < 70 = a. A scheme for selecting more homogeneous
clusters appears later in this section.

The similarity measure in Figure 4.27a describes the averaged results of a
marketing research study for a-company comparing their product X to

A B ¢ D E F G X

24 32 15 39 30 32 37

42 32 14 31 40 23 19

22 37 19 23 38 28 41
@ )

Figure 4.27 Similarity measure and 3.8-level product clusters derived from a market
research study.

§ EXAMPLE 3

seven other successful competing products. In the study each of several
thousand consumers made pairwise comparisons of the eight products,

using the 5-point scale mentioned carlier. The graph &, 5 corresponding to.

the choice a = 3.8 appears in Figure 4.27b. As a result, 3.8-level product
clusters are {A,C.F), (B.E,G,X}, and (D). Relaxing the level to a = 3.0
would yield 3.0-level clusters of {A,C,F,B,E,C.X} and (D). -

Hierarchical Clustering

The choice of a fixed level as the basis for selecting clusters is often
problematic. So let us investigate what happens when a-level single-link-
age clusters are computed for various choices of a. A clue as to what to
expect is provided by the relationship of the 70-level clusters to the
75-evel clusters in Example 1. Lowering « from 75 to 70 introduces four
edges into the graph §5, besides those in §,5 (Figure 4.26). These edges fall
into two categories relative to the existing 75-level clusters: (1) the intra-
cluster edges Bk Dg and Bk Gd (within {Bk,Bn,Dg,Gd,Wn)) and
(2) the intercluster edges Wt St (linking {Ck, Wt} and {St}) and St
Hn (linking (St} and {Hn}). The intracluster cdges simply add edges within
an already existing cluster and so create no changes. On the other hand, the
intercluster edges cause the 75-level clusters {Ck,Wt}, {St}, and {Hp) to
merge, or coalesce, into the solitary 70-level cluster {Ck,Wt,5t,Hn}. Note
that the same kind of relationship holds between the 3.8- and 3.0-level
clusters obtained in Example 2.

This pattern holds in general. Namely, given the clusters at a level a,
then at any level &’ < @, each o¢-level cluster results from merging one or
more a-level clusters. Thus clusters at various levels are organized hierar-
chically and progress from the ““singletons” {x} (¢, has no edges whatsoever
at values of a that exceed all entries of the similarity measure ) to the
object set @ itself for o sufficiently small (when 8, consists of a single
component). The situation is analogous to one in which you were directed
to sort a collection of objects into nonoverlapping piles; then you were told
to group these piles into a smaller number of larger piles; and so on, until
there was but one pile. The determination of a-level single-linkage clusters
for all values of a is called hierarchical single-linkage cluster analysis.

An illustration of hierarchical clustering

Consider the similarity measure § on a six-item object set @ ={a,b.c.d.e.f}
shown in Figure 4.28a. To carry out the hierarchical approach, we start
with the singleton clusters {x} (at levels & > 9, the largest entry of S),
gradually lower o through the values in S, tabulating new intercluster edges
and the corresponding mergers as we go, until all objects reside in a single
cluster. The details appear in Table 4.12. =

A natural presentation of the merging process in Table 4.12 is shown in
Figure 4.28b. This figure is called a dendogram, or hierarchical tree, and is
the standard device for presenting the results of hierarchical clustering. It

g
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merge, or coalesce, into the solitary 70-level cluster {Ck,Wt,5t, Hn}. Note
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Figure 4.28 Similarity measure and resulting single-linkage dendogram.

provides a visual display of the merging of clusters as the criterion for
linking objects is relaxed. In sketching dendograms, it is the convention to
display clusters at the largest o level at which they occur.

Dendogram for 1962 - 1963 term of Supreme Court

The result of hierarchically clustering the 1962 - 1963 term of the Court
(similarity measure S given in Table 4.11) appears in the dendogram in
Figure 4.29a. We can see that the singleton clusters {Bn} and {Wn) merge
at level 95 with no subsequent change until the 86 level, where {Bn,Wn}
merges with {Gd}. Also, we see that the a-level clusters for 77 = > 70 are
(Bn,Wn,Gd,Bk,Dg}, {Ck,Wt}, {St}, and {Hn). This dendogram was con-
structed from a summary like that in Table 4.12. However, once the den-
dogram is available, clearly the summary might as well be discarded. =

Summary of Hierarchical Clustering for Similarity Measure in Figure 4.28

a Level Intercluster edges Clusters
a>9 Na (a}, (b}, (e}, (). {e). L))
gz=a>8 a——d. b e (a,d), (b.é), (&}, (f}
§20a>78 ¢ d (a.c.d), (b}, (1)
78z2a>15 None No mergers
75za>7 e f {a,c.d}, (b.ef)
Tza c e (ab.cdef)

alevel

67

70

77

izl 6
sal sal
86~ sat-
9st- 961

J

Dg Bk Wn Bn Gd Ck Wt St Hn Dg Bk Wn Bn Gd Ck Wt Han St

(a) 1962~1963 All Cases (b} 19621963 Civil Liberties Cases

Figure 4.29 Dendograms for percentage-based similarity measures on U.S. Supreme Court.

a level

« level

57
59t 61
651 7r
67 761
74 78k
78 831
851 89+
89— 91+

Dg Bk Wn Bn Gd Wt Ck St Hn Bk Dg Wn Bn Wt Ck Gd Hn St

(a) 1963-1964 All Cases (b) 1964-1965 All Cases

Figure 4.30 Dendograms for percentage-based similarity measures on U.S. Supreme Court.
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Figure 4.31 (a) A loosely knit cluster; (b) a more
compact version.

The single-linkage dendogram for the 1962-1963 term of the
Court (Figure 4.29a) suggests two factions: a “majority coalition”
(Bk,Bn,Dg,Gd,Wn) with its tightly knit core {Bn,Gd,Wn) and a less cohe-
sive “minority” {Ck,Wt,5t,Hn}. Additional insight would result from com-
paring dendograms for special types of cases, say, antitrust or civil liberties
(Figure 4.29b). Or, in a longitudinal analysis of the Warren Court, dendo-
grams for the 19621963, 19631964, and 1964 - 1965 terms (Figures
4.99a and 4.30) would be useful. In this regard, it appears that Justices
Douglas and Black shifted out of the majority with White and Clark filling
the “void,” and, moreover, that Justice White had replaced Goldberg
within the core of the majority.

Clique Analysis

A single-linkage cluster is often “'stringlike,” with several pairs of objects
joined only loosely via paths rather than directly via edges. For example,
within the 70-level cluster {Ck,Wt,S5t Hn} from Example 1, only three of
the six possible links are present (Figure 4.31a). A much more compact
notion of a four-item cluster, say {e,b,c.d}, would require links, not just
paths, joining all pairs (Figure 4.31b).

Cliques of Supreme Court justices

In Figure 4.32, we have reproduced the graphs 75 and §yo for the
1.962 - 1963 term of the Court. As 75-level clusters suppose we select those
collections of justices in which all distinct pairs are joined by edges of §75
and, moreover, are not part of some even larger collection with this feature.
Clusters selected by using this scheme are called 75-level cliques; they are

{Bn,Dg,Gd,Wn) {Bk,Bn,Wn} {Ck,Wt} {st} {Hn)

That {Bn,Dg,Gd, Wn} is a clique in 875 follows since (1) a link joins each of
the six pairs in this collection and (2) in any larger collection at least one

pair is not linked. For example, in (Bn,Dg,Gd,Wn Bk}, no link joins Justices 3

Douglas and Black, Similarly, from the graph &7, we find the 70-level
cliques to be

(BkBn,Dg.GdWn)  (CkWt}  (StWt}  (HnSt

%s Gd i .
Hn Wi
— C@ Hn
Ck St
(@ ®)

Figure 4.32 Reproduction of Figure 4.26.

Formally, given asimilarity measure on an object set and given anumber
a, the clustering approach in which clusters are the cliques in the graph ¢,
is called a-level clique analysis.

There are costs associated with the added homogeneity of cliques. First,
a nice feature of the single-linkage approach is that each object is classified
into a unique cluster. The fact that objects often belong to several cliques
complicates analyses based on clique structure. (Nevertheless, in Section
7.5 we analyze voting power of individuals using cliques.) In fact, hierarchi-
cal clique analysis is seldom contemplated! Also, a-level clusters are com-
puted easily; however, algorithms for finding a-level cliques can be time-
consuming, even on high-speed computers. See Section 8.2 of Even [1973]
for a deseription of a clique algorithm due to Paull and Unger {1959}

Exercises for Section 4.5

The matrix in Table 4.13 specifies percentage pairwise agreement for split deci-
sions on civil liberties issues rendered by the 1962 - 1963 term of the U.S. Supreme
Court. Use this similarity measure in Exercises 1 to 5.

1962~ 1963 Term, Civil Liberties Cases

Bk Bn Ck Dg Gd Ha St Wn Wt

Bk 80 46 88 72 12 44 84 60
Bn |80 40 84 84 16 56 96 56
Ck [46 40 40 44 68 68 46 76
Dg |88 84 40 76 8 48 88 56
Gd |72 84 44 76 24 72 80 52
Hn |12 16 68 8 24 48 12 88
St |44 56 68 48 72 48 52 84
Wn [84 96 46 88 80 12 52 52

we 60 56 76 56 52 88 84 52

Wn ‘
s
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