Clustering Lecture 3: Hierarchical Methods

Jing Gao SUNY Buffalo

Outline

Basics

Motivation, definition, evaluation

Methods

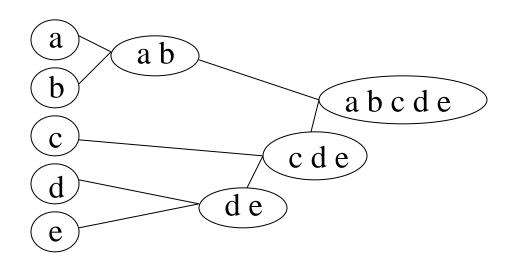
- Partitional
- Hierarchical
- Density-based
- Mixture model
- Spectral methods

Advanced topics

- Clustering ensemble
- Clustering in MapReduce
- Semi-supervised clustering, subspace clustering, co-clustering, etc.

Hierarchical Clustering

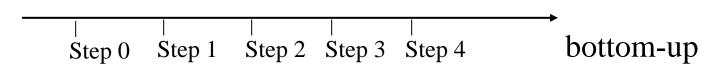
Agglomerative approach



Initialization:

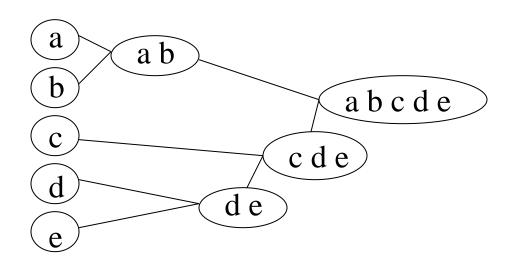
Each object is a cluster Iteration:

Merge two clusters which are most similar to each other;
Until all objects are merged into a single cluster



Hierarchical Clustering

Divisive Approaches

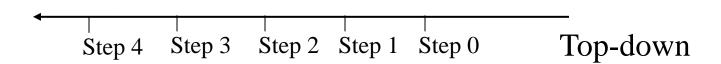


Initialization:

All objects stay in one cluster Iteration:

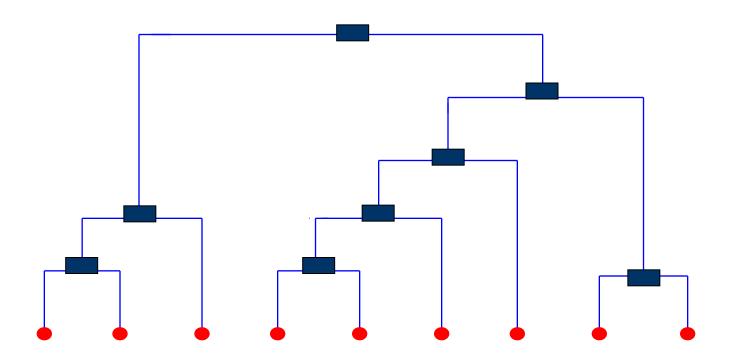
Select a cluster and split it into two sub clusters

Until each leaf cluster contains only one object



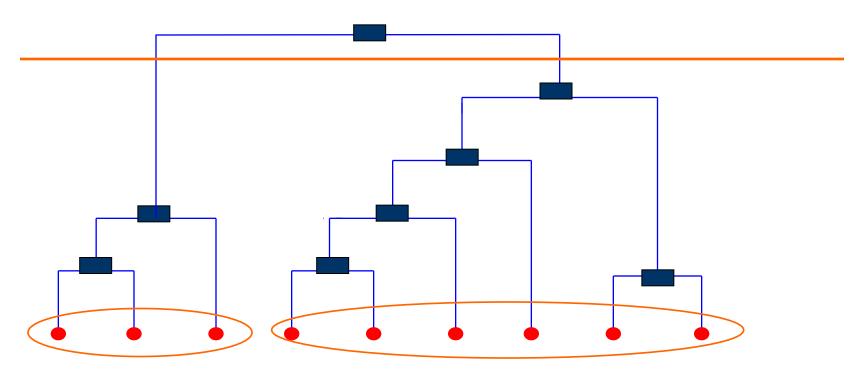
Dendrogram

- A tree that shows how clusters are merged/split hierarchically
- Each node on the tree is a cluster; each leaf node is a singleton cluster



Dendrogram

 A clustering of the data objects is obtained by cutting the *dendrogram* at the desired level, then each connected component forms a cluster

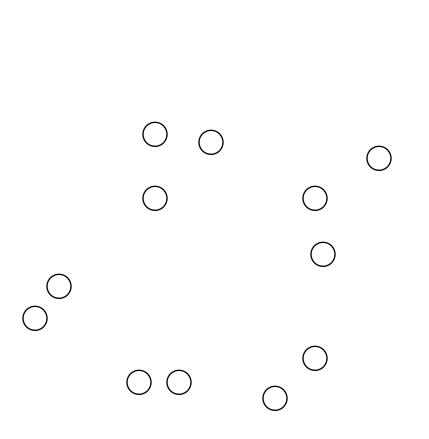


Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
 - 1. Compute the distance matrix
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the distance matrix
 - **6. Until** only a single cluster remains
- Key operation is the computation of the distance between two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

Start with clusters of individual points and a distance matrix

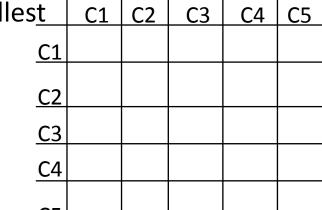


	p1	p2	рЗ	p4	p5	<u> </u>
p1						
p 2						
p2 p3						
p 4						
р5						
•						
Distance Matrix						

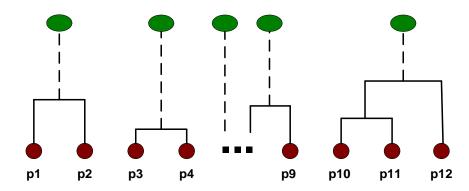
Intermediate Situation

After some merging steps, we have some clusters

 Choose two clusters that has the smallest distance (largest similarity) to merge



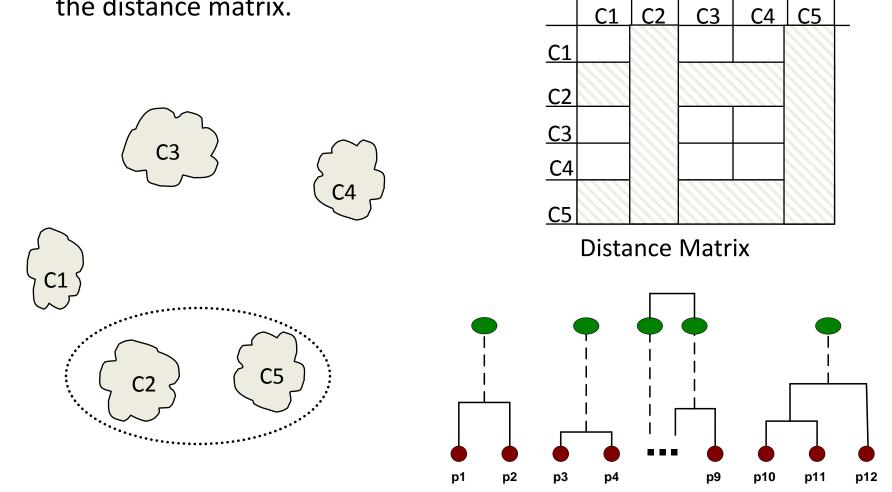
Distance Matrix



Intermediate Situation

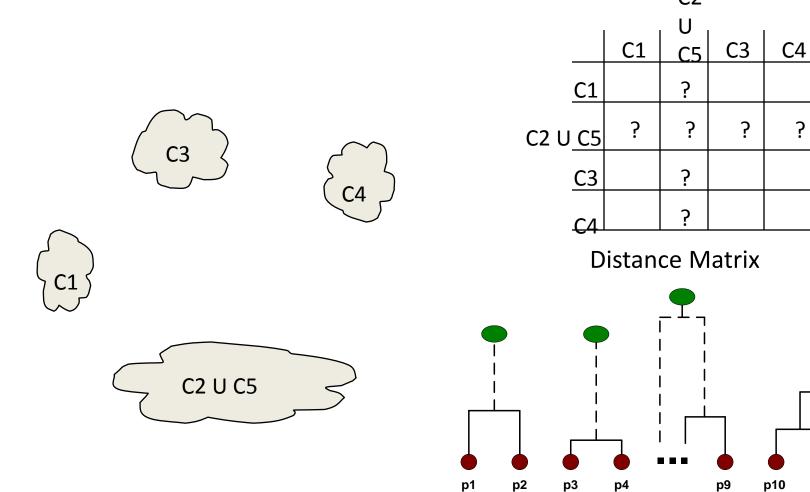
We want to merge the two closest clusters (C2 and C5) and update

the distance matrix.



After Merging

The question is "How do we update the distance matrix?"

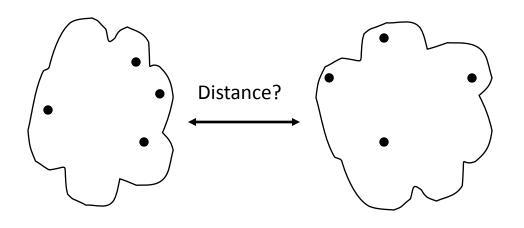


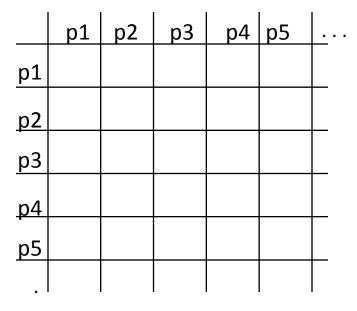
p12

p11

?

How to Define Inter-Cluster Distance





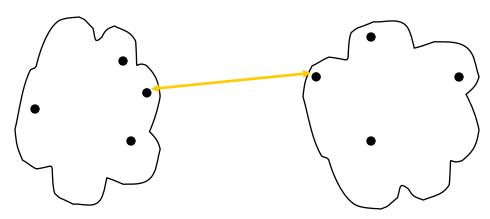
- MIN
- MAX
- Group Average
- Distance Between Centroids
-

Distance Matrix

MIN or Single Link

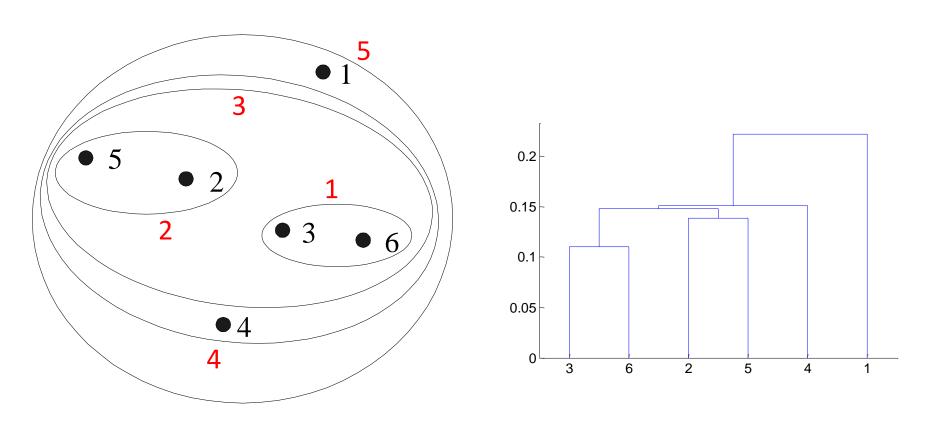
Inter-cluster distance

- The distance between two clusters is represented by the distance of the <u>closest pair of data objects</u> belonging to different clusters.
- Determined by one pair of points, i.e., by one link in the proximity graph



$$d_{\min}(C_i, C_j) = \min_{p \in C_i, q \in C_j} d(p, q)$$

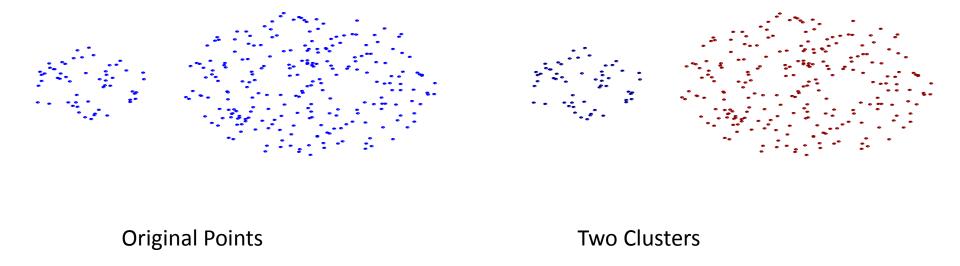
MIN



Nested Clusters

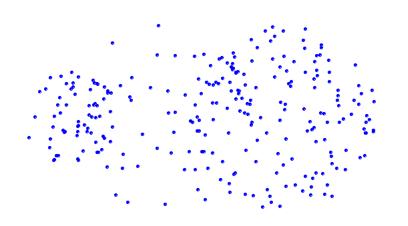
Dendrogram

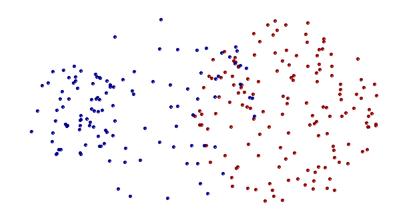
Strength of MIN



• Can handle non-elliptical shapes

Limitations of MIN





Original Points

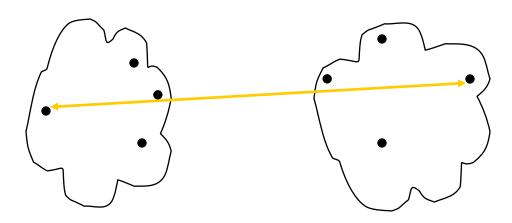
Two Clusters

• Sensitive to noise and outliers

MAX or Complete Link

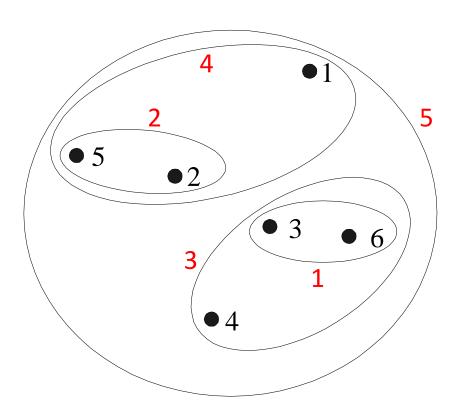
Inter-cluster distance

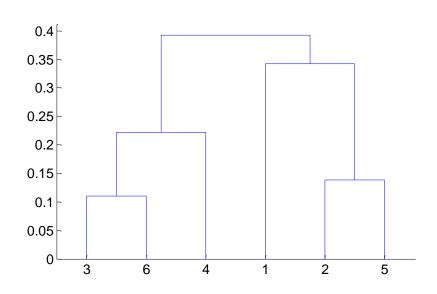
 The distance between two clusters is represented by the distance of the <u>farthest pair of data objects</u> belonging to different clusters



$$d_{\min}(C_i, C_j) = \max_{p \in C_i, q \in C_j} d(p, q)$$

MAX

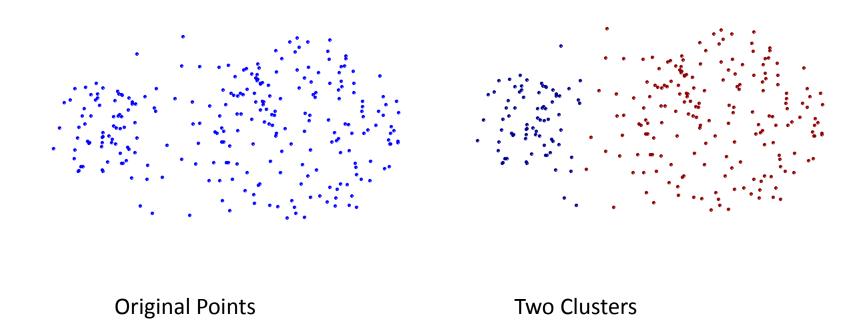




Nested Clusters

Dendrogram

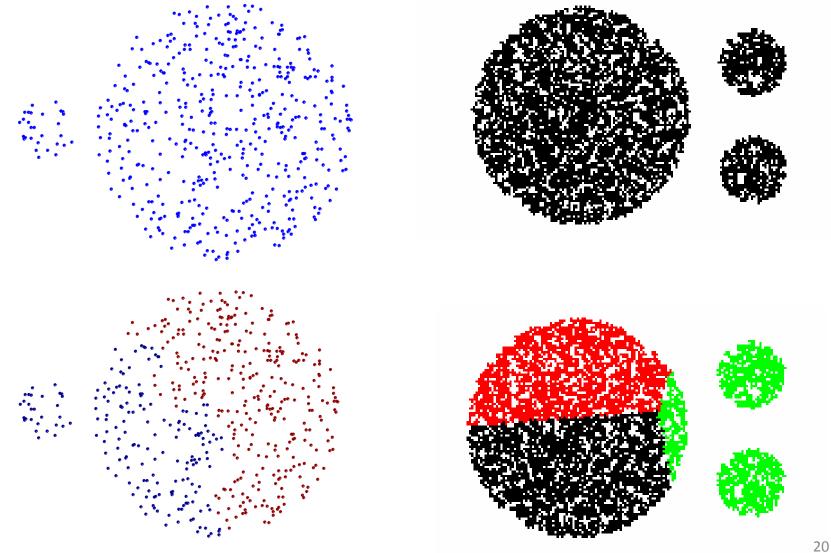
Strength of MAX



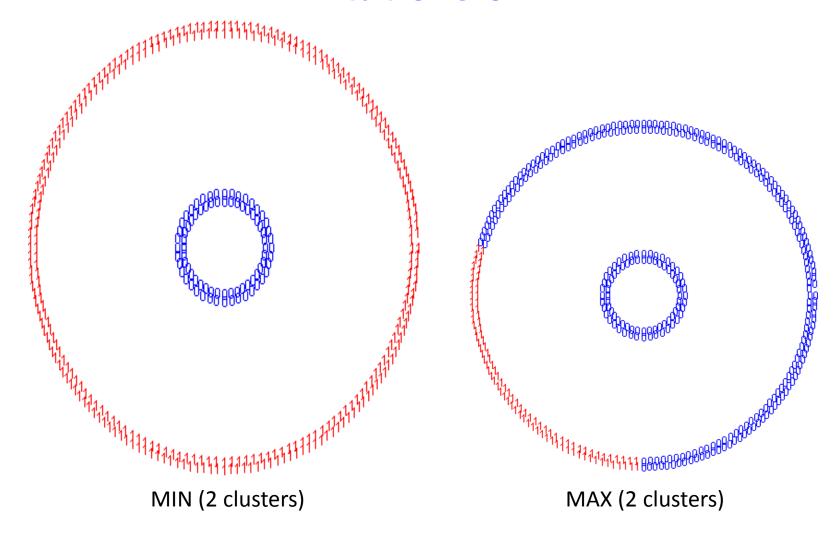
• Less susceptible to noise and outliers

Limitations of MAX

•Tends to break large clusters



Limitations of MAX

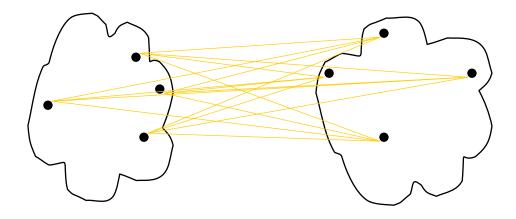


Biased towards globular clusters

Group Average or Average Link

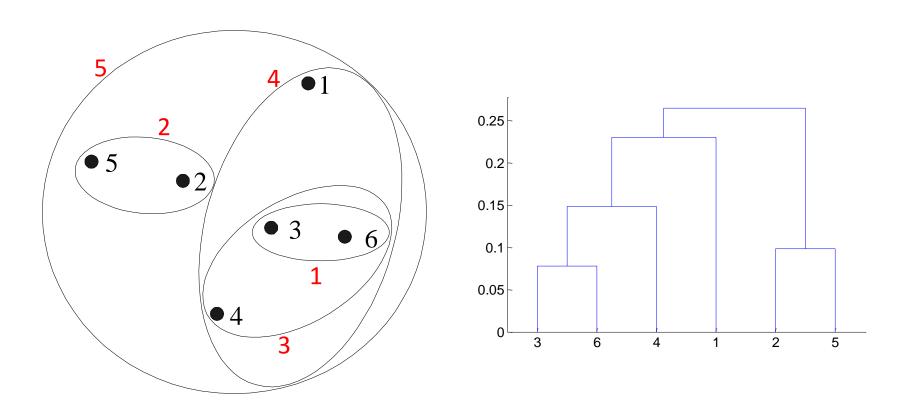
Inter-cluster distance

- The distance between two clusters is represented by the <u>average</u> distance of <u>all pairs of data objects</u> belonging to different clusters
- Determined by all pairs of points in the two clusters



$$d_{\min}(C_i, C_j) = \underset{p \in C_i, q \in C_j}{avg} d(p, q)$$

Group Average



Nested Clusters

Dendrogram

Group Average

 Compromise between Single and Complete Link

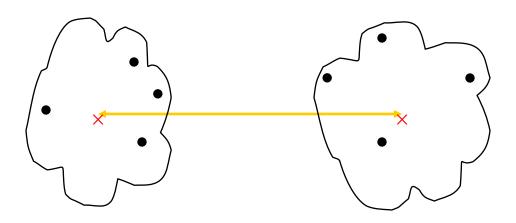
- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters

Centroid Distance

Inter-cluster distance

- The distance between two clusters is represented by the distance between <u>the centers of the clusters</u>
- Determined by cluster centroids

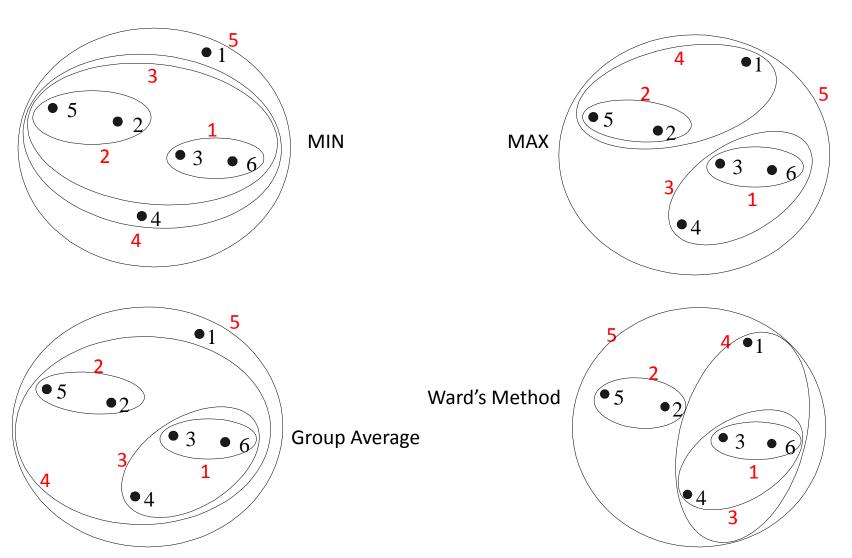


$$d_{mean}(C_i, C_j) = d(m_i, m_j)$$

Ward's Method

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
 - Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of K-means
 - Can be used to initialize K-means

Comparison



Time and Space Requirements

- $O(N^2)$ space since it uses the distance matrix
 - N is the number of points

- $O(N^3)$ time in many cases
 - There are N steps and at each step the size, N^2 , distance matrix must be updated and searched
 - Complexity can be reduced to $O(N^2 \log(N))$ time for some approaches

Strengths

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level

- They may correspond to meaningful taxonomies
 - e.g., shopping websites—electronics (computer, camera, ..), furniture, groceries

Problems and Limitations

- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and irregular shapes
 - Breaking large clusters

Take-away Message

- Agglomerative and divisive hierarchical clustering
- Several ways of defining inter-cluster distance
- The properties of clusters outputted by different approaches based on different inter-cluster distance definition
- Pros and cons of hierarchical clustering