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Outline 

• Basics 
– Motivation, definition, evaluation 

• Methods 
– Partitional 

– Hierarchical 

– Density-based 

– Mixture model 

– Spectral methods 

• Advanced topics 
– Clustering ensemble 

– Clustering in MapReduce 

– Semi-supervised clustering, subspace clustering, co-clustering, 
etc.  
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Hierarchical Clustering 

• Agglomerative approach 
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Step 0 Step 1 Step 2 Step 3 Step 4 bottom-up 

Initialization:  

       Each object is a cluster 

Iteration:  

      Merge two clusters which are 

          most similar to each other; 

      Until all objects are merged 

           into a single cluster 
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Hierarchical Clustering 

• Divisive Approaches 
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Step 4 Step 3 Step 2 Step 1 Step 0 Top-down 

Initialization:  

       All objects stay in one cluster 

Iteration:  

      Select a cluster and split it into 

          two sub clusters 

      Until each leaf cluster contains  

          only one object 
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Dendrogram 

• A tree that shows how clusters are merged/split 
hierarchically  

• Each node on the tree is a cluster; each leaf node is a 
singleton cluster 
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Dendrogram 

• A clustering of the data objects is obtained by cutting 
the dendrogram at the desired level, then each 
connected component forms a cluster 



Agglomerative Clustering Algorithm 

• More popular hierarchical clustering technique 
 

• Basic algorithm is straightforward 
1. Compute the distance matrix 

2. Let each data point be a cluster 

3. Repeat 

4.  Merge the two closest clusters 

5.  Update the distance matrix 

6. Until only a single cluster remains 
  

• Key operation is the computation of the distance between 
two clusters 
– Different approaches to defining the distance between clusters 

distinguish the different algorithms 
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Starting Situation  

• Start with clusters of individual points and a distance matrix 
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Intermediate Situation 

• After some merging steps, we have some clusters 

• Choose two clusters that has the smallest 

      distance (largest similarity) to merge  
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Intermediate Situation 

• We want to merge the two closest clusters (C2 and C5)  and update 
the distance matrix.  
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After Merging 

• The question is “How do we update the distance matrix?”  
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How to Define Inter-Cluster Distance 
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 MIN 

 MAX 

 Group Average 

 Distance Between Centroids 

 …… 

Distance Matrix 
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MIN or Single Link  

• Inter-cluster distance 

– The distance between two clusters is represented by the 
distance of the closest pair of data objects belonging to 
different clusters. 

– Determined by one pair of points, i.e., by one link in the 
proximity graph 
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MIN 

Nested Clusters Dendrogram 
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Strength of MIN 

Original Points Two Clusters 

• Can handle non-elliptical shapes 
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Limitations of MIN 

Original Points Two Clusters 

• Sensitive to noise and outliers 

16 



MAX or Complete Link 

• Inter-cluster distance 

– The distance between two clusters is represented by the 
distance of the farthest pair of data objects belonging to 
different clusters 
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MAX 

Nested Clusters Dendrogram 
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Strength of MAX 

Original Points Two Clusters 

• Less susceptible to noise and outliers 
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Limitations of MAX 

Original Points 

•Tends to break large clusters 
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MIN (2 clusters) MAX (2 clusters) 

Limitations of MAX 

•Biased towards globular clusters 



Group Average or Average Link 

• Inter-cluster distance 

– The distance between two clusters is represented by the 
average distance of all pairs of data objects belonging to 
different clusters 

– Determined by all pairs of points in the two clusters 
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Group Average 

Nested Clusters Dendrogram 
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Group Average 

• Compromise between Single and Complete 
Link 

 

• Strengths 

– Less susceptible to noise and outliers 

 

• Limitations 

– Biased towards globular clusters 
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Centroid Distance 

• Inter-cluster distance 

– The distance between two clusters is represented by the 
distance between the centers of the clusters 

– Determined by cluster centroids 
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Ward’s Method 

• Similarity of two clusters is based on the increase 
in squared error when two clusters are merged 
– Similar to group average if distance between points is 

distance squared 
 

• Less susceptible to noise and outliers 
 

• Biased towards globular clusters 
 

• Hierarchical analogue of K-means 
– Can be used to initialize K-means 
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Comparison 

Group Average 

Ward’s Method 
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Time and Space Requirements 

• O(N2) space since it uses the distance matrix   

– N is the number of points 

 

• O(N3) time in many cases 

– There are N steps and at each step the size, N2, 
distance matrix must be updated and searched 

– Complexity can be reduced to O(N2 log(N) ) time 
for some approaches 

 

 

 

28 



Strengths 

• Do not have to assume any particular number 
of clusters 
– Any desired number of clusters can be obtained 

by ‘cutting’ the dendrogram at the proper level 

 

• They may correspond to meaningful 
taxonomies 
– e.g., shopping websites—electronics (computer, 

camera, ..), furniture, groceries 
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Problems and Limitations 

• Once a decision is made to combine two clusters, 
it cannot be undone 

 

• No objective function is directly minimized 
 

• Different schemes have problems with one or 
more of the following: 
– Sensitivity to noise and outliers 
– Difficulty handling different sized clusters and 

irregular shapes 
– Breaking large clusters 
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Take-away Message 

• Agglomerative and divisive hierarchical clustering 

• Several ways of defining inter-cluster distance 

• The properties of clusters outputted by different 
approaches based on different inter-cluster distance 
definition 

• Pros and cons of hierarchical clustering 
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