
© Amdaris Group Limited. All rights reserved.

October 2019 | Olesea Oaserele

• Why do we need this headache
• Basic concepts of requirement modelling
• Requirement dependencies
• Requirements views modelling
• Quality of the models
• Types of modelling

Typically, software systems today comprise significantly more complex processes,
meaning that the associated textual requirements are very extensive and
complex.
It is then difficult for the reader to understand the interactions within such
complex processes solely on the basis of textual requirements.
The main benefit of modelling the requirements is their clarity over the textual
representation.

• modeling the requirements shows the necessary behavior of the system in a
more structured and understandable way

• the reader can follow the process step by step more easily

Requirements are easier to understand
Cognitive research has shown that, generally, facts that are visualized in diagrams
are easier to understand and remember than corresponding textual descriptions
of these facts . "A picture is worth a thousand words!"

Support of the principle of "separation of concerns"
Requirements are modelled by different diagram types. Each diagram is designed
for a specific purpose and, through the available notation elements (semantics)
and the way the language allows these notation elements to be combined
(syntax), force the modeler to focus on one situation at a time.
Ex: State machine diagrams model the reactive behavior of the system as part of
requirements modeling and don not model processes or information structures.
The separation of concerns is established by different views.

Support of the principle "divide and rule"
• Specific requirements can initially be modeled in isolation, using different

types of diagrams.
• The diagrams can be combined using common concepts or defined

mapping relations in order to obtain an integrated requirements model.
• Diagram-based specification of requirements supports the breaking down

the overall problem (specification) into manageable sub-problems.
• The merging of the individual requirements models of the sub-problems

then forms the requirements model of the higher level system.

Reduced risk of ambiguity
Requirements specified in diagram form have a lower risk of ambiguity or
misinterpretation due to the higher degree of formality of modeling
languages compared to natural languages

Higher potential for automated analysis of requirements
Due to higher formality of modelling language, diagrams are better analysed by
machines (software) than natural language.

Higher potential for automatic processing of requirements
The higher degree of formalization of requirements specified in diagram form also
increases the possibility of processing the requirements of the system further
automatically and using them in other development disciplines. For example, to
derive test cases for system testing from requirements diagrams of the control
flow-oriented view.

Requirements in context
The modeling of requirements offers the possibility to represent in the same
model separate requirement elements and their relationships. This facilitates the
handling of large and complex requirements and promotes their understanding
because the context and relationships of a requirement is clearly visible in the
model.
Ex: In an activity diagram, for every action it is immediately visible what’s next and
what system state change is triggered by the execution of the action.

Modeling Requirements as a Means of Specification
• requirements diagrams replace textually specified requirements
• requirements diagrams are used as the primary means for specifying the system

requirements or part of the system requirements.
• requirements diagrams can (and should) be supplemented by textual requirements

or textual explanations, specifically when a text is more compact or easier to
handle than diagrams.

• if all requirements still need to be available in textual form (e.g., due to contractual
conditions or certification requirements), they can be generated from the
requirements models—for example, using templates for converting requirements
diagrams into text form

Modeling Existing Textual Requirements for the Purpose of Testing
• requirement diagrams are created for a logically coherent set of textually specified

requirements
• complex system behavior is very clear and understandably represented in models,

hence granular test cases are easy to be created
• diagrams offer possibility to check the comprehensibility of textual requirements or

to uncover inconsistencies or omissions in the textual requirements
• defects uncovered in models are then corrected in the textual requirements
Modeling Existing Textual Requirements for Clarity
• modeled requirements are used to represent extensive and complex relationships

that affect the behavior of the system.
• be aware that this redundant form of the specification can lead to significant

problems with regard to contradictions between textually specified requirements
and modeled requirements

• A model – an abstracting image of the properties of a system.
• To make the scope and complexity of the modeling manageable, various views of

the system and its environment are documented
• The views discussed further are NOT the unique perspective and NOT a standard.
• The properties of the system in relation to each specific view are represented

through diagrams and supplementary textual model elements.
• Each diagram is based on a specific diagram type
• Each diagram type is represented via a modeling language (more precisely by

syntax, semantics, and pragmatics).
• The underlying modeling language of a diagram type defines the set of modeling

constructs that can be used to construct the corresponding diagrams (e.g., class and
association for the construction of class diagrams).

• In a modeling language, graphical and/or textual notations are defined for the
modeling constructs.

• In practice, it is sometimes difficult to distinguish between requirements diagrams
and design diagrams.

• The cause is frequently seen in the fact that the same universal modeling
languages are used for design and requirements modeling, such as UML, SysML,
BPMN.

• In fact, the cause in most cases is that the alleged requirements diagrams specify
not requirements but rather the system design

• or that requirements and design are mixed in diagrams.

• during the development of complex software systems, there is a strong
interaction between the definition of requirements and the system design

• it is often the case that both design diagrams and requirements diagrams are
created in parallel at the same time

• requirements and design are often developed with very strong links
• typically, the first step is to produce a set of more general requirements for

the complete system.
• this set of requirements is then the basis for the definition of the preliminary

system architecture which satisfies these requirements.
• during the transition between requirements definition and system design,

design decisions have to be made and the given conditions for the design
(design constraints) have to be met

• Starting from the initial system architecture, the requirements for the
individual subsystems can be specified

• If sufficiently detailed requirements are available, the initial system design is
refined.

• For requirements modelling are available a number of diagram types and modelling
languages

• Selection of the diagram and its representation (language) depends very closely on:
o the target audience (who will be reading the model)
o the purpose if the diagram (which specific requirement is to be modeled)
o the type of the system to be modelled (operational or embedded)
o application domain (banks, insurance, automotive, recruitment,…)

• Sometimes it’s more important that the model is understood and is useful that the
exact language is used

• It’s important to coach all stakeholders to have the same understanding of the
chosen representation.

• Requirements models can and should contain textually represented requirements in
order to top up the graphical model when needed.

UML - The Unified Modeling Language is a general-purpose visual modeling language.
• used in the field of software engineering
• intended to specify, visualize, construct, and document the artifacts of a software

system.
• is a standard notation for the modeling of a system, but not a way of designing a

system.
• the UML specification is intended to support most existing object-oriented

development processes.

UML diagrams are:
• Structure diagrams: Class Diagram, Object Diagram, Package Diagram, Composite

Structure Diagram, Component Diagram, Deployment Diagram, Profile Diagram
• Behavior diagrams: Use Case Diagram, Information Flow Diagram, Activity Diagram,

State Machine Diagram, Sequence Diagram, Communication Diagram, Timing
Diagram,

BPMN - The Business Process Model and Notation (BPMN) is a graphical illustration of
business processes
• its primary goal is to provide a notation that is easily understandable by all business

users.
• the BPMN notation is used by business analysts and developers alike to represent a

business process in an intuitive visual form.

BPMN diagrams are: Business Process Diagram, Choreography Diagram Collaboration
Diagram, Conversation Diagram.

UML is a general-purpose visual
modeling language for software
engineering. A set of diagrams, intended
to specify, visualize, construct, and
document the artifacts of a software
system.

The UML is an object-oriented modeling
language which takes an object-oriented
approach to the modeling of
applications. UML focuses on a standard
language but not a standard process,
which reflects what happens in reality.

BPMN is a graphical illustration of a
business process model with the goal of
providing a notation that is easily
understandable by all business users.

The BPMN, takes a process-oriented
approach to modeling the systems. It
focuses on business processes without
covering other aspects of an organization
and it covers only the description of the
notation’s elements.

SysML - Systems Modelling Language is a general-purpose modeling language
for systems engineering applications. It supports the specification, analysis, design,
verification and validation of a broad range of systems and systems-of-systems.
SysML is defined as an extension of a subset of the (UML)

Common diagrams: Activity
Diagram, Class Diagram (Block
definition), Composite Structure
Diagram (Internal Block), Sequence
Diagram, State Machine Diagram,
Use Case diagram, Package
Diagram
SysML specific diagrams:
Requirement Diagram, Parametric
Diagram

• During requirements management various views can be created in order to
represent different perspectives of the same functionality.

• Views can be defined to address specific concerns of stakeholders.
• A user view can be defined to represent the user’s perspectives over the system.

Persona and product champions are invaluable at this stage. This view models only
those requirements that directly affects the way the system will be used

• Can be created views related to maintenance or to various NFRs
• Various "philosophies" for establishing views can be applied in combination to

control the scope and complexity of requirements modeling.
• Through common concepts or map-ping relationships, the requirements models of

the different views can then be integrated into an overall model.

Context View – understanding the context of the system
• the knowledge of what systems are related to the system under development
• properties of external systems
• which roles, people interact with the system
• which properties of the interacting roles are relevant for the system.
• identify the necessary interfaces between the system under development and its

context.
• Typically is used the Context Diagram

Information Structure View – representing the static structural information
• static and structural aspects of the functionality,
• the structure of data to be processed by the system.
• Typical, but not exhaustive diagram types are class diagrams or various dialects of

entity-relationship diagrams

Dynamic View – representing dynamical aspects of the system
• dynamic aspects of the functionality.
• behavioral models of the system
• chronological-logical relationships in the required behavior of the system
• divided in other views:

o Use Case view
o Data-Flow view
o Control-Flow view
o Scenario view
o State view

• Typical, but not exhaustive diagram types used:
o use case diagrams,
o activity diagrams,
o state machine diagrams,
o data flow diagrams,
o sequence diagrams.

Use Case View - user functions and dependencies to the system context
• high-level system structure
• user functions and their relationships to actors in the system context
• functionality that the system must offer for an actor within the context to gain

a benefit.
• Use case diagrams are typically used
Data Flow-Oriented View - system functions and data dependencies
• the functions that manipulate date from the system interface
• the data dependencies between functions
• data dependencies with actors in the system context
• the functions can be analysed at various levels of granularity
• typical diagrams used are:

o data flow diagrams,
o activity diagrams that focus on the object flow between actions.

Control Flow-Oriented View - process flow logic
• the processes (activities, actions) conducted from the system interface
• processes flow logic
• the control flow relationships are considered in the form of sequential, alternating,

or concurrent sequences
• typical diagrams:

o activity diagram,
o event-driven process chains
o BPMN process diagrams

State-Oriented View - states and state changes
• the required state space of the system
• the reactive behavior of the system in relation to the system context
• state changes observable at the system interface
• state changes between the system and the system context
• events triggering a state change
• typical diagrams: State Machine, Finite Automation, State Charts

Scenario View – interaction sequences between Actors and the System
• considers interactions between actors and the system
• represents the added value or business goal obtained by the actors
• scenarios are frequently used to make use cases in use case diagrams more specific
• the scenarios modeled should always lead to successful execution of a use case
• the message exchange between actors in the context of the system are
• typical diagrams:

o Sequence Diagram
o Communication Diagram
o Message Sequence Charts

Quality View – modelling the NFRs
• focus on quality non-functional requirements of the system or components
• mainly represented by textual supplements or annotation to other diagrams
• can be used taxonomy of quality attributes models (studied during types of

requirements course)
o Multi-level
o McCall’s
o Boehm’s
o ISO/IEC 25010

Constraints View – requirements in terms of boundary conditions
• external constraints
• organizational conditions
• tech constraints – design, developments
• regulatory constraints
• often documented in textual form or by textual additions in requirements models
• can be used: class diagrams, component diagrams

Textual adding or annotations are very useful in almost any diagram.
• describe those details which are not possible to represent graphically
• declutter the diagram of not-so-relevant elements
• add details for stakeholders which are not very involved
SysML has the requirements diagram which is assigned to neither the structure
view nor to the behavior view
• used for modelling textual requirements
• allows the modeling of relationships between textual requirements and model

elements of SysML diagrams
• used to include predetermined requirements in the requirements model (ex.

specific requirements from a business domain)

Most commercially available UML tools offer the possibility of using textual requirements
in any diagram type.
• allows the specification of textual requirements to be included in diagrams, so that they

are expressed in the best possible way.
Ex: an action in a flow can be refined through a number of textual requirements which
are then included in the requirements model and related to this action (by means of an
appropriate tracing relationship, for example).

• integrating textually specified requirements allows us to specify quality requirements
that relate to a specific action
Ex: requirements concerning the performance of an action are represented as textual
requirements by placing them in a relationship with the action within the diagram.

• Different requirements are modeled in different diagrams and the same
requirement can have perspectives modeled in different diagrams.

• The dependencies should be registered thoroughly in order to easily navigate
through models and to avoid gaps and overlaps.

• UML and SysML offer explicitly defined dependency relationships
• Sometimes you’ll have to choose the dependencies stereotype function of the

application domain or the diagram type.
• Dependency relationship types:

o Refine
o Satisfy
o Copy
o And other…

A <<refines>> B
• Describes how a model element or a set of elements

refine a requirement.
• A can show how B could be split to more fine grained

requirements
• A adds details to B
Examples
✓ a use case or activity diagram may be used to refine a

text-based functional requirement.
✓ a text-based requirement refines a model element
✓ some elaborated text could be used to refine a less

fine-grained model element.

A <<satisfies>> B
• Describes the fact that A satisfies B
• A can be a component for B
• A fulfils the requirement from B
• A can become a list of more fine grained of B
Example
➢ When creating a category will be needed more

components: Create dialog, filling in the fields,
validation, accepting, declining. All these
requirements satisfy the Category creation

A <<copies>> B
• Describes the fact that A is a read only copy

of B
• A contains the exact details as B
• Copy dependency is useful for tracing the

changes in A and B requirements. Existing
tools will highlight the copy dependency
when one of them is changed

Derive:
A<<derives>>B
• the derived requirement is generated or inferred from the source requirement.
• useful for splitting requirement B
• useful for impact analysis
Trace:
A<<traces>>B
• a dependency between a requirement and an arbitrary model element traced by

this requirement.
Verify:
A<<verifies>>B
• a dependency between a requirement and a test case or a model element that

can determine whether the system fulfills the requirement.

The quality of the requirements model, the requirements diagrams, and model
elements can be assessed against three criteria:
Syntactic Quality
The syntactic quality expresses the extent to which a model element satisfies the
syntax of a selected modelling language.
Ex: UML was selected as modelling language.

To assess the syntactic quality of a diagram should be examined how well the
diagram meets the UML notation requirements.

Can be syntactically assessed:
• single model element (graphical or textual),
• a diagram
• entire requirements model
If appropriate modeling tools are used for modeling requirements, the syntactic
quality of the diagrams created is usually ensured by the tool.

Semantic Quality
The semantic quality expresses how well a model represents the fact correctly and
completely.
A semantically qualitative model does NOT have overlaps, gaps or erroneous
information.
Stakeholders validation is very important for ensuring Semantic Quality.
Ex: Requirement Model for an ATM flow.

If a an activity diagram models that after reading the card data, the customer is
first asked for the payment amount, not the PIN code this represents a semantic
defect, since the actual flow deviates from the diagram.

Can be semantically assessed
• single model element (graphical or textual),
• a diagram
• entire requirements model

Pragmatic Quality
The pragmatic quality expresses the extent to which a model is suitable for the
selected use. It raises the question of how well the selected level of abstraction and
detail represents the intended requirements
Pragmatic assessment can be performed only if the purpose and target audience of
the diagram are known.
Pragmatic quality has a direct effect on the semantic quality – the completeness and
correctness of the model.
Ex: A state transition diagram.

Pragmatic assessment will evaluate the level of details added. Is only the
triggering event specified or are the alternate conditions described as well?

Can be pragmatically assessed
• single model element (graphical or textual),
• a diagram
• entire requirements model

• During requirements engineering the system boundaries are specified and the
system scope is clearly distinguished from its context.

• Understanding the context of the system is challenging
• The more complex and critical the system is, the more important it is to understand

and document the context.
• Context includes:

o knowledge about which other systems influence the system in an operational
context,

o properties of the external systems,
o knowledge about which roles or people interact with the system in an

operational context
o which properties relevant for the system they have.
o context modeling also helps to identify the necessary interfaces of the system

Studied during the Requirement Elicitation lesson
• from a requirements perspective, the context view defines the scope of a system,

meaning that it draws a line between functionality in and outside the scope.
• the context view can help when considering the properties, functions and qualities

of the external systems relevant for the system under development
The context diagram can be modelled using various notations:

• UML class diagram,
• use case diagram,
• component diagram

• tabular representation
• flow diagram
• SysML block diagram

The three essential basic elements of a context diagram are:
• The system under development and its boundary
• Neighboring systems or actors
• The logical interfaces between the system and its neighboring systems

This example is more
appropriate for the coarse
grained level of
requirements

Visually illustrates the
boundary and connections
between the system to be
developed and any
external entities

The following pragmatic rules should be considered:
• All neighboring systems that interact with the system should be included in the

diagram – completeness of the communication partners
• All neighboring systems should be named - to clearly specify where the input comes

from and where the output goes to
• All inputs and outputs should be labeled with the logical name of the data flows –

unnamed arrows indicate a lack of understanding of the interface

The diagram shows actors in the system context and the data flows between
actors and the system.

The cooperation between the system under development and the neighboring
systems in the context is also the subject of:
• the use case view – used to roughly structure the system boundaries and

scoping.
• the scenario view – sequences of communication with external entities can be

specified.
• state-oriented view – the state of the system context and corresponding state

transitions are modeled.
• data flow-oriented view – modeling functions in the system context and

documenting their relationship to functions of the system.

© Amdaris Group Limited. All rights reserved.

