
© Amdaris Group Limited. All rights reserved.

September 2019 | Olesea Oaserele



• Users naturally focus on specifying functional requirements, i.e., behavior 
that a software will exhibit under specific conditions.

• The success of a product represent more than just delivering the right 
functionality

• Users also have the expectations about how well the product will work:
o How easy it is to use
o How quickly it runs
o How often it fails
o How it handles exceptional conditions
o How secure it is



• Business Requirements
• User Requirements
• Market Requirements
• Architectural/System Requirements
• Transition Requirements
• Functional Requirements
• Non-Functional Requirements

o System Requirements
o Quality attributes
o Constraints

We will focus on functional and non-functional requirements





• Business requirement - A high-level business objective of the organization that 
builds a product or of a customer who procures it. 

• Business rule - A policy, guideline, standard, or regulation that defines or 
constrains some aspect of the business. Not a software requirement in itself, 
but the origin of several types of software requirements.

• Constraint - A restriction that is imposed on the choices available to the 
developer for the design and construction of a product.

• External interface requirement – A description of a connection between a 
software system and a user, another software system, or a hardware device



• Feature – One or more logically related system capabilities that provide value to 
a user and are described by a set of functional requirements.

• Functional requirement – A description of a behavior that a system will exhibit 
under specific conditions.

• Nonfunctional requirement – A description of a property or characteristic that a 
system must exhibit or a constraint that it must respect.

• Quality attribute – A kind of nonfunctional requirement that describes a service 
or performance characteristic of a product.

• System requirement – A top-level requirement for a product that contains 
multiple subsystems, which could be all software or software and hardware.

• User requirement – A goal or task that specific classes of users must be able to 
perform with a system, or a desired product attribute.





• A description of a behavior that a system will exhibit under specific 
conditions.

• Are derivate from business and user requirements
• Describe the ultimate aim of the product - what should it do.
• Describe what the developers must implement
• Represent the description of ways to accomplish users’ tasks (user 

requirements)
• Describe the business needs in order to accomplish business objectives 

(business requirements)



Functional requirements often are written in the form of the traditional 
“shall” statements: “The Passenger shall be able to print boarding passes for 
all flight segments for which he has checked in” or “If the Passenger’s profile 
does not indicate a seating preference, the reservation system shall assign a 
seat.”

The business analyst documents functional requirements in a software 
requirements specification (SRS) document, which describes as fully as 
necessary the expected behavior of the software system. 
The functional requirements are evident: they describe the observable 
behavior of the system in different situations and conditions.



How various stakeholders might 
participate in eliciting the three levels of 
requirements. 

Alignment among the three levels is 
crucial for the project success.





• Describe the requirements for a product that is composed of multiple 
components or subsystems. 

• A system can be all software or it can include both software and hardware 
subsystems. 

• People and processes are part of a system, too. 
• Often system requirements refers to the technical and hardware 

requirements in order to ensure the product works flawless.
• Or they can describe the behavior of the other elements of the system, so 

that the product will work and bring business value



Example of a “system” is the cashier’s workstation in a supermarket. 
It could contain: 
• a bar code scanner integrated with a scale, 
• a hand-held bar code scanner
• a keyboard 
• a display
• a cash drawer
• a card reader and PIN pad for your loyalty card and credit or debit card
• a change dispenser
• up to three printers for your purchase receipt, credit card receipt

These hardware devices are all interacting under software control.
The requirements for the system or product as a whole will describe how will 
all those interact and what should interface of each entity provide. 





• Non-functional requirements can make or break the success of your 
product. There are lots of examples when the product failed even if all 
functionality were built by requirements and were serving the business 
objectives. 

• They could serve as the origin of many functional requirements and can 
also drive significant architectural and design decisions. 

• It’s far more costly to re-architect a completed system to achieve essential 
quality goals than to design for them at the outset. 

• Some additional work on security at development time might avoid a lot of 
cost and user inconvenience.

• Non-functional requirements specify not what the system does, but rather 
how well it does those things. 



• Non-functional requirements are also known as:
o quality attributes
o quality factors
o quality of service requirements 
o constraints, and the 
o “–ilities” 

• Non-functional requirements describe the product’s characteristics in 
various dimensions: 
o performance
o safety
o availability
o security
o usability



• Some quality attributes are important to users, other are important to 
developers and maintainers. 

• BAs must work with all groups of stakeholders to elicit all non-functional 
requirements

• External interfaces with other entities are also described in non-functional 
requirements:
o user-software relationship
o connections to other software systems
o hardware components
o communication interfaces

• Design and implementation constraints impose restrictions on the options 
available to the developer during construction of the product.



• Other class of non-functional requirements address the environment in 
which the system operates:
o platform to hold the product
o portability on different hard and software environment 
o compatibility with various systems
o compliance requirements 
o regulatory requirements
o certification requirements

• Also related to environment are localisation requirements that must take 
into account:
o cultures, 
o languages, 
o laws, 
o currencies, 
o terminology, 
o spelling



• Customers generally can not present their quality expectations explicitly
• Lack of awareness in the need of their specification
• Lack of understanding of the future product characteristics
• Problems with categorisation and relevance proving of the quality 

requirements
• Issues with signing-off the quality attributes because:

o It’s hard to clearly specify the quality attributes 
o It’s hard to set some KPIs to evaluate them
o There isn’t any precise specification of the quality
o Sometimes there is no possibility of evaluating the quality but the 

human feelings





Some well-known models:
• Hierarchical general model of software quality
• Multi-level roadmap non-functional taxonomy
• McCall’s model 
• Boehm’s model 
• ISO/IEC 25010:2011 software quality model

Lists of quality attributes:
• Wieger’s list
• Wikipedia’s list https://en.wikipedia.org/wiki/List_of_system_quality_attributes
• Volere Requirements Specification Template – will be discussed at Requirements 

specification course

https://en.wikipedia.org/wiki/List_of_system_quality_attributes




















1. Start with a broad taxonomy
• Wieger’s
• Multi-level 
• McCall’s 
• ISO/IEC 25010 
• Wikipedia,…
2. Reduce the list
• Engage stakeholders to assess which 

of the attributes are likely to be 
important

• Elicit other needs
3. Prioritize the attributes
• Select the most important from the 

important

• Possibly further reduce the list
4. Elicit specific expectations for each 
attribute
• Set measures for each attribute
• Define expectations per attribute
5. Specify well-structured quality 
requirements

A spreadsheet that could help you with 
the analysis:
http://www.clarrus.com/resources/arti
cles/software-quality-attributes/

http://www.clarrus.com/resources/articles/software-quality-attributes/


• Perform a pairwise comparison and identify which is most important in each pair
• If the left side attribute is more important, identify with a '<' character,
• otherwise use a '^' character
• Score = Sum of all ‘arrows’ pointing to the attribute



Users won’t know how to answer questions such as:
“What are your interoperability requirements?”
“How reliable your system should be?”
Sample questions during elicitation:
• What would be a reasonable or acceptable response time for a typical query 

performed by the user?
• What would users consider an unacceptable response time for a typical query?
• How many simultaneous users are you expecting on average?
• What is the maximum number of simultaneous users that you would 

anticipate?
• What times of the day, week, month or year have much heavier usage than 

usual?



• Quality requirement need to be measurable to establish a precise 
agreement on expectations.

• If it is not measurable, there is no point in specifying it
• If you are not able to determine if you have achieved a desired goal, it can 

be a not verifiable requirement
• The aim is to make the most or all requirements verifiable

About the specification of requirements we’ll discuss at the Requirements 
Specification courses





• How easy it is for potential users to learn, remember and use the system. 
Also referred to as “ease of use”, “user-friendliness”, or even “human 
engineering”

• It is an important topic and contains: 
o Ease of use, ease of learning
o Memorability
o Error avoidance, handling, and recovery
o Efficiency of interactions
o Accessibility
o Ergonomics

• Many of these are not strictly verifiable



• Success rate – percentage of tasks that users complete correctly
• The time a task requires – the average time needed for a specific type of user 

to complete a particular task correctly.
• How many transactions the user can complete correctly in a given time 

period.
• What percentage of a set of tasks the user can complete correctly without 

needing help.
• Error rate – how many errors the user makes when completing a task. 
• How many tries it takes the user to accomplish a particular task, like finding a 

specific function buried somewhere in the menus.
• The number of interactions (mouse clicks, keystrokes, touch-screen gestures) 

required to get to a piece of information or to accomplish a task.
• User’s subjective level of satisfaction – comparable between 

versions/releases/similar tools



User interface (UI) requirements involve mainly: 
• Conventions and standards that have been developed for the “human-

computer interface”
• Look and feel for various Operational Systems 
• Compliance to application standards 
• Compliance to company branding standards
• Requirements related to various groups of users
Following standards and conventions usually help to increase usability:
E.g., using autocompletion/autocorrection, tooltips, menu options, similarity 
to other familiar systems, wizards, etc.



Ex1: After one hour training, a user shall be able to complete 20 data entry 
with an error rate less than 1 in 20, in no more than 30 minutes.

Ex 2: A librarian user who has never used the CCC Library System before shall 
be able to catalogue a book correctly with no more than 30 minutes of 
orientation.

Ex3: All functions on the File menu shall have shortcut keys defined that use 
the Control key pressed simultaneously with one other key. The X, Y, Z, … file 
menu commands shall use the same shortcut keys that MS Office Word 2016 
uses.



• Performance is an external quality attribute.
• It is closely related to the internal quality attribute of efficiency.
• How quickly and predictably the system responds to user inputs or other 

events.
Ex. 1: The interpreter component shall parse at least 5000 error-free statements 
per minute.
Ex. 2: 95% of the transactions shall be processed in less than 1 second.
Ex. 3: The application should work without response time degradation with a 
load of 100k concurrent users.
Ex. 4: Webpages shall fully download in an average of 3 seconds or less over a 
100 megabits/second Internet connection in a standard office PC (standard office 
PC shall be described in the requirement)



• How easily the system can interconnect and exchange data with other 
systems or components.

• Can be related to connection to various external devices
• Or to the way and easiness the system exchange data with other systems or 

devices
• Or to the level of acceptance of various data standards or forms

Ex: The system shall be able to import a valid BPMN v2 process model file from 
Bizagi (version 2.8 or 2.7) and Signavio (version 9.0 or 9.2)



• The extent to which the system protects itself against data inaccuracy 
and loss.

• How well the system is able to work with and manage corrupted data

Ex.1: After performing a file backup, the system shall verify the backup 
copy against the original and report any discrepancies.

Ex.2: The system shall confirm that an encoded structure of a BPMNv2 
process model file imported from a third-party process modeling
tool represents a valid structure.



• The ability to continue to operate under predefined positive or 
negative conditions.

• Unlike physical objects, software does not wear out, so their 
reliability shall not decrease with time

• Robustness and availability are closely related to reliability.
• Failures occur due to: 

o improper inputs
o errors in the software code
o components that are not available
o hardware failures, …



It is very difficult to quantify the Reliability 
• Mean Time Between Failures (MTBF) – The average length of 

time the system runs before failing
• Rate of failure occurrence – Percentage of failed requests
• Percentage of operations that are completed correctly
• How long the system runs before experiencing a failure.

Some questions to ask during Elicitation:
• How would you judge whether this system was reliable enough?
• What would you consider to be a critical failure, as opposed to 

nuisance?
• Under what conditions could a failure have severe 

repercussions on your business operations?
• No one likes to see a system crash, but are there certain parts of 

the system that absolutely have to be super-reliable?



For some systems reliability is crucially important
• Flight management systems
• Air traffic control systems
• Magnetic resonance systems
Such systems should also be designed for high verifiability, so that it becomes 
easier to detect defects.

Ex.1: The train acceleration control software shall have a mean time between 
failures of the order of 109 hours.
Ex. 2: No more than 5 experimental runs out of 1000 can be lost because of 
software failures.
Ex. 3: The mean-time between failures of the card reader component shall be at 
least 90 days.



• The extent to which the system’s services are available.
• Ask stakeholders what percentage of up time is really needed 

and whether there are any times for which availability is 
imperative to meet business or safety objectives.

Ex.1: The system must be 100% operational 99.9% of the calendar 
time during its first year of operation.
Ex.2: The system shall have less than 1hr downtime per three 
months.
Ex.3: The system shall be at least 99.5 percent available on 
weekdays between 6:00 a.m. and midnight local time, and at least 
99.95 percent available on weekdays between 4:00 p.m. and 6:00 
p.m. local time.



• How well the system responds to unexpected operating conditions.
• Or Software’s capability of maintaining a specified performance level in 

cases of operation faults
• Also known as Fault tolerance

Metrics to quantify:
• Time to restart after failure
• Percentage of events causing failure
• Probability of data corruption on failure

Ex.1: If the editor fails before the user saves the file, the editor shall be 
able to recover all changes made in the file being edited up to one minute 
prior to the failure the next time the same user starts the program.



How well the system protects against unauthorized access to the 
application and its data.

Ex. 1: The system shall lock a user’s account after four consecutive 
unsuccessful attempts within a period of five minutes.
Ex. 2: The system shall log all attempts to access secure data by users 
having insufficient privilege levels.
Ex. 3: A user shall have to change the temporary password assigned by the 
security administrator to a previously unused password immediately 
following the first successful logon with the
temporary password.



• Ability of the system to handle load increases without decreasing 
performance, or the possibility to rapidly increase the load.

• How easily the system can grow to handle more users, transactions, 
servers, or other extensions.

Ex. 1: The product shall be capable of processing the existing 100,000 
customers. This number is expected to grow to 500,000 within three 
years.
Ex. 2: The product shall be able to process 50,000 transactions an hour 
within two years of its launch.



Minus - increasing the 
attribute in that row 
adversely affects the 
attribute in the column.
Vice versa is not true.

Blank cell - attribute in 
the row has little 
impact on the attribute 
in the column.

Plus - increasing the 
attribute in that row 
positively affects the 
attribute in the column.



Restrictions applied to the actions that the system or its users are allowed to perform. 
Certain actions must or must not or may not be performed, or that only certain 
people or roles can perform particular actions.
Constraints are often derived into functional requirements

Constraints could have different origins
Organizational policies
Ex.1: A loan applicant who is less than 18 years old must have a parent or a legal 
guardian as cosigner on the loan.
Ex.2: A library patron may have a maximum of 10 items on hold at any time.
Ex.3: Insurance correspondence may not display more than four digits of the 
policyholder’s Social Security number.



Government regulations
Ex.1: All software applications must comply with government regulations for usage by 
visually impaired persons.
Ex.2: Airline pilots must receive at least 8 continuous hours of rest in every 24-hour 
period.
Ex.3: Individual federal income tax returns must be postmarked by midnight on the 
first business day after April 14 unless an extension has been granted.

Industry standards
Ex.1: Mortgage loan applicants must satisfy the Federal Housing Authority qualification 
standards.
Ex.2: Web applications may not contain any HTML tags or attributes that are 
deprecated according to the HTML 5 standard.



© Amdaris Group Limited. All rights reserved.


