

MD-2045, CHIŞINĂU, STR. Studenților 9/7, TEL: 022 509-908, www.utm.md

TRAITEMENT DES SIGNAUX

1. Informations sur l'unité de cours / module

Faculté	Ordinateurs, Informatique et Microélectronique				
Chaire/département	Filière Francophone Informatique, dép. Génie Logiciel et Automatique				
Cycle d'études	Études supérieures, Licence - cycle I				
Programme d'études	526.2 Technologies de l'information				
Année d'étude	Semestre	Туре	Catégorie	Catégorie	Crédites
		d'évaluation	formative	d'option	ECTS
II (enseignement à plein	3		S – unitate de	O - unitate de	
temps)		Е	curs de	curs	4
			specialitate	obligatorie	

2. Estimation du temps total

	Dont				
Nombre total	Heur	Heures dans la salle de Travail individuel			
d'heures dans le		cours	Travaii iliulviuuei		
programme	Cours	Travaux	Projet	Étude du matériel	Préparation de
	Cours	pratique/dirigés	d'année	théorique	l'application
120	30	30		30	30

3. Prérequis pour l'accès à l'unité de cours/module

Selon le programme d'études	Mathématiques discrètes en ingénierie, théorie des probabilités.			
Selon les compétences	Connaissance de la théorie des probabilités d'automates abstraites;			
	connaître les principes et les méthodes de conception et de mise en œuvre			
	de filtres numériques et de dispositifs CAO.			

4. Conditions de déploiement le processus éducatif pour

Cours	Pour présenter le matériel théorique en classe, sont nécessaires un projecteur et un ordinateur. Les retards des étudiants et les appels téléphoniques pendant le cours ne seront pas tolérés.
Travaux pratique/dirigés	Les étudiants rédigeront des rapports selon les conditions formulées dans les indications méthodiques. La durée du soutien d'un travail pratique est 2 semaines après l'achèvement. La soumission tardive du document est pénalisée : -1 point pour une semaine de retard.

5. Compétences spécifiques accumulées

Compétences	CP4. Définir des concepts, des théories, des méthodes spécifiques aux langages formels et
professionnelles	des compilateurs.
	✓ connaître les notions de base et les algorithmes fondamentaux de la théorie des
	langages formels et des automates abstraits;
	√ être capable d'appliquer ses notions et les algorithmes;
	✓ se familiariser avec la hiérarchie des langues formelles;
	✓ connaitre des modèles d'automates abstraits et leur hiérarchie;
	✓ connaître les notions et algorithmes fondamentaux dans le domaine de la conception
	et de la mise en œuvre du compilateur.

Compétences	CP6. Évaluer et assurer la qualité du produit en relation avec les processus de processus				
professionnelles	associés.				
	√ déterminer la classe de hiérarchie de la grammaire et de la machine abstraite;				
	✓ appliquer des automates finis grammaticales régulières et des expressions régulières				
	lors de la conception et de la mise en œuvre d'analyseurs lexicaux;				
	✓ appliquer les notions et algorithmes étudiés à la formalisation et à la réalisation de				
	divers problèmes liés à la conception et à la réalisation des systèmes d'information.				
	✓ déterminer les algorithmes et les stratégies appropriés pour résoudre des problèmes				
	concrets.				
Compétences	CT1. Estimer la complexité des algorithmes utilisés et des systèmes développés;				
transversales	CT2. Être capable de concevoir et de développer une application composante d'un				
	système d'information intégré basé sur les connaissances accumulées;				
	CT3. Intégrer des composants déjà développés dans des systèmes informatiques				
	complexes.				

6. Objectifs de l'unité de cours / module

Objectif général	Présentation des aspects théoriques et pratiques des langages formels, des automates et		
	des méthodes de conception et d'implémentation des compilateurs.		
Objectifs spécifiques	La variété et la complexité des langages de programmation nécessitent le		
	développement des méthodes appropriées pour réalisation de la principale interface		
	utilisateur avec l'ordinateur, qui est le processeur du langage de programmation. Lors		
	du développement de systèmes de programmation intégrés, d'interfaces, d'applications		
	en langage naturel, de systèmes de contrôle automatisés, de progiciels, de savoir écrire		
	une partie d'un compilateur.		

7. Contenu de l'unité de cours / module

	Nombre	d'heures
Thématique des activités didactiques	enseignement à temps plein	enseignement à temps partiel
Thème des cours		
T1. Classes de signaux. Signaux et leurs particularités. Signaux discrets.	2	
T2. Transformée de Fourier. Propriétés de la transformée de Fourier. Applications. Problèmes.	2	
T3. Transformée Z. La transformée en Z inverse. Calculer la transformée en Z inverse.	2	
T4 Systèmes de filtration. Définitions, propriétés de base. Systèmes linéaires invariants dans le temps. Filtres à réponse impulsionnelle finie (Finite Impulse Response - FIR), filtres à réponse impulsionnelle infinie (Infinite Impulse Response - IIR).	2	
T5. Échantillonnage du signal. Échantillonnage (conversion analogique- numérique). Quantification des signaux. Conversion numérique- analogique. Zéro-interpolation. Le théorème d'échantillonnage classique (Shanon).	4	
T6. Changer la fréquence d'échantillonnage. Décimation. Interpolation (discrète).	2	
T7. Conception de filtres. Spécification de la performance	2	
T8. Design du filtre (FIR) par la méthode de la fenêtre. Fenêtres usuelles.	2	
T9. Conception de filtre (IIR): méthode de transformation.	2	
T10. Filtres analogiques. Filtre Butterworth. Filtre de Chebyshev. Filtre	2	

FICHE DE COURS/MODULE

elliptique.		
T11. La transformation bilinéaire. Le filtre de Butterworth discret.	2	
T12. Analyse de fréquence des signaux. Transformée de Fourier discrète.	2	
T13. Convolution cyclique. Transformée de Fourier discrète inverse.	2	
T14. Transformée de Fourier rapide.	2	
Total des cours:	30	

	Nombre d'heures	
Thématique des activités didactiques	enseignement à temps plein	enseignement à temps partiel
Thèmes des travaux pratiques		
TP1. Concepts de base en Matlab	4	
TP2. Convolution et corrélation des données.	4	
TP3. Systèmes discrets linéaires invariants en temps	4	
TP4. Transformée de Fourier discrète. Transformée de Fourier rapide (DFT,	4	
FFT).		
TP5. Fonctions "Fenêtre". Analyse spectrale des signaux.	4	
TP6. Échantillonnage et quantification des signaux.	6	
TP7. Filtres discrets (FIR, IIR).		
Total des travaux pratiques:	30	

8. Références bibliographiques

O: Reference	ces ofonographiques
Principales	 Francis Cottet, Traitement des signaux et acquisition de données, Ed. Dunod, 432 pages, 2015.
	 Yvan Duroc, L'essentiel en théorie et traitement du signal - Signaux déterministes et aléatoires, continus et discrets, Ed. Ellipses Marketing, 216 pages, 2011.
	 Jean-Noël Martin, Débuter en traitement numérique du signal - Applications au filtrage et au traitement des sons - Cours et exercices résolus, Ed. Ellipses Marketing, 209 pages, 2005.
	4. Patrick Nayman, Bases et techniques avancées en traitement du signal - Du capteur à la mesure, Ellipses Marketing, 672 pages, 2017.
Supplémentaires	 André Quinquis, Le traitement du signal sous Matlab : Pratique et applications, Ed. Hermes Science Publications, 446 pages, 2007

9. Evaluation

Actuelle		Projet d'année	Evernon final	
Attestation 1	Attestation 2	Projet u annee	Examen final	
20%	20%		60%	

Normes de rendement minimum

Présence et activité aux cours et travaux pratiques;

Obtenez le score minimal de "5" pour chacune des attestations et des travaux pratiques;

Démonstration à l'examen final des connaissances des conditions de traitement du signal.