

Internet of Things Projects
with ESP32

Build exciting and powerful IoT projects using the all-new
Espressif ESP32

Agus Kurniawan

BIRMINGHAM - MUMBAI

Internet of Things Projects with ESP32
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Prachi Bisht
Content Development Editor: Aishwarya Moray
Technical Editor: Prashant Chaudhari
Copy Editor: Safis Editing
Language Support Editor: Storm Mann
Project Coordinator: Nusaiba Ansari
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Graphics: Tom Scaria
Production Coordinator: Arvindkumar Gupta

First published: March 2019

Production reference: 1290319

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78995-687-0

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Agus Kurniawan is an independent technology consultant, author, and lecturer. He has
over 18 years' experience working on various software development projects, including
delivering training courses and workshops, and delivering technical writing. He has done a
few research activities related to wireless networking, software, and security in multiple
universities. Currently, he is pursuing a Ph.D. program in Computer Science in Germany.
He has previously written five books for Packt.

About the reviewer
Catalin Batrinu is an Electronics, Telecommunications and Information Technology
graduate from the Politehnica University of Bucharest. After 5 years in applications
development, where he helped companies move applications to the cloud, he moved to IoT.
He has prototyped irrigation controllers, smart sockets, window shutters, lighting controls,
environment controls et cetera, all controlled over the cloud. As an IoT Architect, he
develops augmented/virtual reality frameworks, sensors and digital twin concepts,
corresponding software architecture related to Big Data, real time performance, and
structured/unstructured data analysis and modelling. He also identifies data sources,
defines the single point of truth, and ensures data security.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Getting Started with ESP32 6
Technical requirements 6
Introduction to ESP32 6
Reviewing development boards-based ESP32 7

The official ESP32 development kit 8
Third-party boards-based ESP32 10

Setting up the development environment 12
Demo 1 – building your first ESP32 program 12

Wiring 12
Creating a project 14
Writing the program 14
Configuring the project 17
Compiling and flashing 19

Arduino programming for ESP32 20
Demo 2 - making an Arduino Sketch program with ESP32 23
Summary 26
Further reading 26

Chapter 2: Making Visual Data and Animation on an LCD 27
Technical requirements 27
Introduction to ESP32 GPIO 28
Introduction to IoT for weather monitoring systems 29
Reading temperature and humidity from a sensor device 30

Wiring 30
Building a program 31
Running the program 33

Displaying information using an LCD 35
Hardware wiring 35
Creating a project 37
Writing an ESP32 program 38
Configuring the ESP-WROVER-KIT v4 board 40
Flashing and running a program 44
Displaying image files 45

Making a weather monitoring system 48
Creating a project 49
Hardware wiring 49
Writing a program 50
Flashing and running 51

Table of Contents

[ii]

Summary 52
Further reading 53

Chapter 3: Building a Simple Game with an Embedded ESP32 Board 54
Technical requirements 54
Introducing game-embedded systems 54
Introducing the joystick sensor module 55
Working with the joystick sensor module 57

Wiring 58
Creating a project 59
Writing the program 60
Running the program 61

Working with a sound buzzer 62
Connecting the sound buzzer with the ESP32 62
Writing a program for the sound buzzer with the ESP32 63

Demo – building a simple embedded game 64
The game scenario 65
Hardware wiring 66
Developing the game program 66
Playing the game 71

Summary 72

Chapter 4: Building a Sensor Monitoring Logger 73
Technical requirements 73
Introducing the sensor monitoring logger 73
Accessing a microSD card from the ESP32 74
Demo – accessing microSD cards from the ESP32 76
Storing sensor data on a microSD card 80
Project – building a sensor monitoring logger 81

Designing our program 82
Writing the program 83
Running the program 86

Summary 87

Chapter 5: Controlling IoT Devices over the Internet 88
Technical requirements 88
Introducing ESP32 Wi-Fi development 89
Scanning Wi-Fi hotspot 89
Connecting to an existing Wi-Fi network 93
Accessing data from a web server 95
Building your own web server inside ESP32 100

Building HTTP requests 101
Building a web server 105
Testing the program 107

Project - making a smart home 111

Table of Contents

[iii]

Hardware wiring 112
Handling HTTP requests 112
Writing a web server program 114
Testing the program 117

Summary 122

Chapter 6: Building an IoT Weather Station 123
Technical requirements 123
Introducing a weather station 124
Working with DHT sensors 125
Building an IoT weather station 125

Hardware wiring 126
Writing the program 126
Testing the program 131

The auto-refresh weather application 132
Handling a massive data request for a weather station 133

Writing a program for ESP32 134
Writing a program for Node.js 136
Testing the program 140

Summary 142

Chapter 7: Making Your Own Wi-Fi Wardriving 143
Technical requirements 143
Introducing Wi-Fi Wardriving 144
Reviewing the GPS module 145
Accessing your location via the GPS module 147

Hardware wiring 148
Writing a program 148
Running a program 151

Parsing GPS data 152
Building your own Wi-Fi Wardriving with ESP32 154

Hardware wiring 154
Writing a program 155
Testing a program 158

Mapping Wi-Fi hotspots to Google Maps 159
Privacy issues 160
Summary 160

Chapter 8: Building Your Own Wi-Fi Cam 161
Technical requirements 161
Introducing Wi-Fi cams 162
Reviewing camera modules 163
Accessing the camera from ESP32 166
Demo – building a Wi-Fi cam 166

Hardware wiring 167

Table of Contents

[iv]

Writing a program 168
Handling HTTP requests 168
Developing the main program 170

Testing 175
Summary 178

Chapter 9: Making IoT Devices Interact with Mobile Applications 179
Technical requirements 179
Introducing mobile applications 180
Making a mobile application and ESP32 interact 180
Controlling ESP32 from a mobile application 181

Hardware wiring 182
Developing the ESP32 program 183
Developing an Android application 190

Creating an Android project 190
Configuring the Android project 193
Building the UI Android program 194
Writing an Android program 196

Testing a program with Postman 199
Testing the program with Android 202

Summary 205

Chapter 10: Building IoT Monitoring with Cloud Technology 206
Technical requirements 206
Introducing cloud technology 207
Connecting ESP32 to cloud platforms 207
Building IoT monitoring with ESP32 and AWS 208

Hardware wiring 208
Registering an IoT device 208
Configuring a device security policy 214
Developing an ESP32 program 218

Creating a project 219
Configuring a project 220
Writing the ESP32 program 223

Compiling, flashing, and testing 224
Summary 227
Further reading 227

Other Books You May Enjoy 228

Index 231

Preface
ESP32 is a low-cost MCU with integrated Wi-Fi and BLE. Various modules and
development boards-based ESP32 are available to build Internet-of-Things (IoT)
applications easily. Wi-Fi and BLE are common network stacks in IoT applications. These
network modules can fulfil your business and project needs, providing cost-effective
benefits.

This book will serve as a fundamental guide to developing an ESP32 program. We will start
with GPIO programming, which will involve some sensor devices. Then, we will get deep
into ESP32 development by building some IoT projects such as a weather station, a sensor
logger, a smart home device, a Wi-Fi camera, and Wi-Fi Wardriving. Lastly, we will enable
ESP32 to interact with mobile applications and cloud servers such as Amazon AWS.

By the end of this book, you will be up and running with various IoT projects based on the
ESP32 chip.

Who this book is for
This book is designed for students, professional designers, developers, and IoT enthusiasts.
Basic knowledge of ESP32 is not required to work with the content of this book.

What this book covers
Chapter 1, Getting Started with ESP32, presents a review of the ESP32 board. We also set up
a development environment for ESP32 boards.

Chapter 2, Making Visual Data and Animation on an LCD, offers a brief introduction to
weather systems. Here, we'll make a simple ESP32 program to sense temperature and
humidity using the DHT22 sensor module. Furthermore, we'll work with the LCD on the
ESP32 board, accessing the LCD modules through the ESP32 board.

Chapter 3, Building a Simple Game with an Embedded ESP32 Board, teaches you how to work
with an analog joystick, along with an exploration of a simple sound device with a sound
buzzer, and the development of a simple game.

Preface

[2]

Chapter 4, Building a Sensor Monitoring Logger, covers how to work with external storage,
such as SD cards and microSD cards, on an ESP32 board. We'll store our sensor data on
external storage, and use a sensor monitoring logger by applying sleep mode after sensing
and storing sensor data.

Chapter 5, Controlling IoT Devices over the Internet, covers how to work with Wi-Fi on an
ESP32 board. Our ESP32 board will be connected to the internet and accessed over a web
server. We'll also make a simple web server inside the ESP32 board. Lastly, we'll build a
simple smart home device by controlling an LED over a network.

Chapter 6, Building an IoT Weather Station, takes the reader through building a weather
station with ESP32 and DHT22. We'll also extend our weather station with Node.js in order
to serve massive requests.

Chapter 7, Making Your Own Wi-Fi Wardriving, teaches the reader how to access the GPS
module on the ESP32 board. We'll build a simple wardriving project to perform Wi-Fi
profiling on a GPS location. We'll see how to read Wi-Fi SSIDs and GPS data
simultaneously.

Chapter 8, Building Your Own Wi-Fi Cam, outlines how to work with the camera module on
the ESP32 board. Here, we'll use the OV7670 camera module to capture images. We'll also
develop Wi-Fi functionality to take a picture over a network.

Chapter 9, Making IoT Devices Interact with Mobile Applications, outlines how to develop an
ESP32 program and an Android application, and then make the two interact using the Wi-
Fi protocol as a communication medium. You can use this approach to control some sensor
and actuator devices on the ESP32 board via an Android application. We'll learn how to
build a BLE service on the ESP32 board, and cover how to make interactions between the
ESP32 board and mobile Android through BLE.

Chapter 10, Building IoT Monitoring with Cloud Technology, covers operations in AWS IoT.
We'll create an ESP32 program to send temperature and humidity sensor data to AWS IoT,
and build a communication link between AWS IoT and ESP32 over MQTT. This skill can be
extended to other IoT devices.

Preface

[3]

To get the most out of this book
This book is intended for anyone who wants to learn IoT development with ESP32. The
following is a list of required skills for this book:

You should have basic knowledge of the C or C++ programming languages.
Having basic knowledge of IoT concepts will help the reader when following the
exercises in this book, but isn't necessary.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Internet- of- Things- Projects- with- ESP32. In case there's an update to
the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Internet-of-Things-Projects-with-ESP32
https://github.com/PacktPublishing/Internet-of-Things-Projects-with-ESP32
https://github.com/PacktPublishing/Internet-of-Things-Projects-with-ESP32
https://github.com/PacktPublishing/Internet-of-Things-Projects-with-ESP32
https://github.com/PacktPublishing/Internet-of-Things-Projects-with-ESP32
https://github.com/PacktPublishing/Internet-of-Things-Projects-with-ESP32
https://github.com/PacktPublishing/Internet-of-Things-Projects-with-ESP32
https://github.com/PacktPublishing/Internet-of-Things-Projects-with-ESP32
https://github.com/PacktPublishing/Internet-of-Things-Projects-with-ESP32
https://github.com/PacktPublishing/Internet-of-Things-Projects-with-ESP32
https://github.com/PacktPublishing/Internet-of-Things-Projects-with-ESP32
https://github.com/PacktPublishing/Internet-of-Things-Projects-with-ESP32
https://github.com/PacktPublishing/Internet-of-Things-Projects-with-ESP32
https://github.com/PacktPublishing/Internet-of-Things-Projects-with-ESP32
https://github.com/PacktPublishing/Internet-of-Things-Projects-with-ESP32
https://github.com/PacktPublishing/Internet-of-Things-Projects-with-ESP32
https://github.com/PacktPublishing/Internet-of-Things-Projects-with-ESP32
https://github.com/PacktPublishing/Internet-of-Things-Projects-with-ESP32
https://github.com/PacktPublishing/Internet-of-Things-Projects-with-ESP32
https://github.com/PacktPublishing/Internet-of-Things-Projects-with-ESP32
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

 int16_t temperature = 0;
 int16_t humidity = 0;
 if (dht_read_data(sensor_type, dht_gpio, &humidity, &temperature)
== ESP_OK){

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

int16_t temperature = 0;
 int16_t humidity = 0;
 if (dht_read_data(sensor_type, dht_gpio, &humidity, &temperature)
== ESP_OK){

Any command-line input or output is written as follows:

$ make menuconfig

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[5]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/
http://www.packt.com/

1
Getting Started with ESP32

ESP32 is a low-cost chip that consists of MCU with Wi-Fi and a Bluetooth network stack
that makes it possible to build an Internet of Things (IoT) application. In this chapter, we
will review ESP32 boards and learn ESP32 basic development.

We will also cover the following topics:

Introduction to ESP32
Reviewing development boards-based ESP32
Setting up a development environment
Building ESP32 programs with Espressif SDK
Developing Sketch programs on ESP32 development boards

Technical requirements
Before we begin, make sure you have the following things ready:

A computer with an OS installed such as Windows, Linux, or macOS.
An ESP32 development board. Recommended is the ESP-WROVER-KIT v4 board
from Espressif.

Introduction to ESP32
ESP32 is a low-cost Wi-Fi and Bluetooth chip from Espressif Systems. ESP32 integrates Wi-
Fi (2.4 GHz band) and Bluetooth 4.2 solutions on a single chip. It also supports classic
Bluetooth for legacy connections such as L2CAP, SDP, GAP, SMP, AVDTP, AVCTP, A2DP
(SNK), and AVRCP (CT). ESP32 also supports Bluetooth Low Energy (BLE), which covers
L2CAP, GAP, GATT, SMP, and GATT-based profiles. A detailed product review of the
ESP32 chip/module can be found at the following link: https:/ /www. espressif. com/ en/
products/hardware/ esp32/ .

https://www.espressif.com/en/products/hardware/esp32/
https://www.espressif.com/en/products/hardware/esp32/
https://www.espressif.com/en/products/hardware/esp32/
https://www.espressif.com/en/products/hardware/esp32/
https://www.espressif.com/en/products/hardware/esp32/
https://www.espressif.com/en/products/hardware/esp32/
https://www.espressif.com/en/products/hardware/esp32/
https://www.espressif.com/en/products/hardware/esp32/
https://www.espressif.com/en/products/hardware/esp32/
https://www.espressif.com/en/products/hardware/esp32/
https://www.espressif.com/en/products/hardware/esp32/
https://www.espressif.com/en/products/hardware/esp32/
https://www.espressif.com/en/products/hardware/esp32/
https://www.espressif.com/en/products/hardware/esp32/
https://www.espressif.com/en/products/hardware/esp32/
https://www.espressif.com/en/products/hardware/esp32/
https://www.espressif.com/en/products/hardware/esp32/

Getting Started with ESP32 Chapter 1

[7]

There are two forms for ESP32: chip form and module form. ESP32 chip and module forms
have different sizes and numbers of pins. Choosing ESP32 form is dependent on your
design and purposes. The size factor of ESP32 form can also be one of your preferences
when you make and design an IoT solution-included PCB scheme. A list of ESP32 chips
and modules can be read on the following website: https:/ /www. espressif. com/ en/
products/hardware/ modules.

Next, we will review some development boards that use the ESP32 chip or ESP32 module.

Reviewing development boards-based
ESP32
Since ESP32 has two forms, in chip and module, there are some development boards with
an ESP32 chip or ESP32 module. In this book, we will not learn how to make a board-based
ESP32. Instead, we will use pre-existing, ready development boards available on the
market.

We can categorize boards-based ESP32 into two models. The first board models are the
development boards officially manufactured by Espressif. The second models are from
their partners or personal makers.

Let's review some available ESP32 development boards on the market.

https://www.espressif.com/en/products/hardware/modules
https://www.espressif.com/en/products/hardware/modules
https://www.espressif.com/en/products/hardware/modules
https://www.espressif.com/en/products/hardware/modules
https://www.espressif.com/en/products/hardware/modules
https://www.espressif.com/en/products/hardware/modules
https://www.espressif.com/en/products/hardware/modules
https://www.espressif.com/en/products/hardware/modules
https://www.espressif.com/en/products/hardware/modules
https://www.espressif.com/en/products/hardware/modules
https://www.espressif.com/en/products/hardware/modules
https://www.espressif.com/en/products/hardware/modules
https://www.espressif.com/en/products/hardware/modules
https://www.espressif.com/en/products/hardware/modules
https://www.espressif.com/en/products/hardware/modules
https://www.espressif.com/en/products/hardware/modules

Getting Started with ESP32 Chapter 1

[8]

The official ESP32 development kit
In general, Espressif provides an ESP32 development kit board that we can use directly. We
don't need to take any effort to make a PCB board and do soldering of the ESP32 chip. A list
of ESP32 boards from Espressif can be found at this link: https:/ / www.espressif. com/ en/
products/hardware/ development- boards. We will review the two ESP32 boards: ESP32-
PICO-KIT and ESP-WROVER-KIT boards.

ESP32-PICO-KIT is a basic development board that is small in size. This board fits on
breadboard PCB, so you can do wiring on it. The board consists of EPS32 chips such
as serial USB CP2102 (version 4.0)/CP2102N (version 4.1). You can connect this board to a
computer through USB.

ESP-WROVER-KIT is a complete development board. This consists of various sensors and
modules. The board uses ESP32-WROVER for ESP32 board implementation. The following
are the main features from ESP-WROVER-KIT:

JTAG interface on FT2232HL
Camera connector
I/O connector
RGB LED
Micro SD card slot
LCD

https://www.espressif.com/en/products/hardware/development-boards
https://www.espressif.com/en/products/hardware/development-boards
https://www.espressif.com/en/products/hardware/development-boards
https://www.espressif.com/en/products/hardware/development-boards
https://www.espressif.com/en/products/hardware/development-boards
https://www.espressif.com/en/products/hardware/development-boards
https://www.espressif.com/en/products/hardware/development-boards
https://www.espressif.com/en/products/hardware/development-boards
https://www.espressif.com/en/products/hardware/development-boards
https://www.espressif.com/en/products/hardware/development-boards
https://www.espressif.com/en/products/hardware/development-boards
https://www.espressif.com/en/products/hardware/development-boards
https://www.espressif.com/en/products/hardware/development-boards
https://www.espressif.com/en/products/hardware/development-boards
https://www.espressif.com/en/products/hardware/development-boards
https://www.espressif.com/en/products/hardware/development-boards
https://www.espressif.com/en/products/hardware/development-boards
https://www.espressif.com/en/products/hardware/development-boards

Getting Started with ESP32 Chapter 1

[9]

A form of ESP-WROVER-KIT can be seen in this photo:

ESP-WROVER-KIT

Getting Started with ESP32 Chapter 1

[10]

Third-party boards-based ESP32
We can buy ESP32 chips and modules from Espressif and their distributors. Then, we can
make our own development board for ESP32. Sometimes, these boards-based ESP32 boards
are sold to the public. In this section, we will review two ESP32 development boards.

SparkFun ESP32 Thing is one of the ESP32 development boards from SparkFun. This board
uses the ESP32 chip. The board provides TTL USB to make it possible to communicate with
the ESP32 chip. In addition, SparkFun ESP32 Thing has an LiPo connector so we can run the
board with a battery. For further information about SparkFun ESP32 Thing, you can visit on
this site: https://www. sparkfun. com/ products/ 13907. A form of the SparkFun ESP32
Thing board is shown in the following photo:

SparkFun ESP32 Thing

https://www.sparkfun.com/products/13907
https://www.sparkfun.com/products/13907
https://www.sparkfun.com/products/13907
https://www.sparkfun.com/products/13907
https://www.sparkfun.com/products/13907
https://www.sparkfun.com/products/13907
https://www.sparkfun.com/products/13907
https://www.sparkfun.com/products/13907
https://www.sparkfun.com/products/13907
https://www.sparkfun.com/products/13907
https://www.sparkfun.com/products/13907
https://www.sparkfun.com/products/13907
https://www.sparkfun.com/products/13907

Getting Started with ESP32 Chapter 1

[11]

Adafruit is an electronic manufacturer and electronic product online store. They make a
development board-based ESP32 called Adafruit HUZZAH32 – ESP32 Feather Board. This
board uses the ESP32 module. Adafruit HUZZAH32 has a TTL USB and LiPo connector
like the SparkFun ESP32 Thing board. You can visit https:/ /www. adafruit. com/ product/
3405 to purchase this board:

Adafruit HUZZAH32 – ESP32 Feather Board

Other board-based ESP32 boards can be found on Alibaba and AliExpress. You can search
for ESP32 board as keywords. There are many custom development boards with ESP32
chips or modules.

In this book, I use ESP-WROVER-KIT for testing.

https://www.adafruit.com/product/3405
https://www.adafruit.com/product/3405
https://www.adafruit.com/product/3405
https://www.adafruit.com/product/3405
https://www.adafruit.com/product/3405
https://www.adafruit.com/product/3405
https://www.adafruit.com/product/3405
https://www.adafruit.com/product/3405
https://www.adafruit.com/product/3405
https://www.adafruit.com/product/3405
https://www.adafruit.com/product/3405
https://www.adafruit.com/product/3405

Getting Started with ESP32 Chapter 1

[12]

Setting up the development environment
Espressif provides SDK development for ESP32. Technically, there is a guideline document
from Espressif on how to set up the ESP32 toolchain. You can follow this guideline for
Windows, Linux, and macOS: https:/ /docs. espressif. com/ projects/ esp-idf/ en/
latest/get-started/ index. html#setup- toolchain.

After completed, you can continue to get ESP-IDF to enable you to develop the ESP32
program. You also need all required libraries for Python. A detailed guideline can be read
on this site: https:/ / docs. espressif. com/ projects/ esp- idf/ en/ latest/ get- started/
index.html#get-started- get- esp- idf.

If done, we can develop programs for the ESP32 board. The ESP32 program is written in C
programming language, which you should be familiar with. However, we can write ESP32
programs using any text editor. In this book, I use Visual Studio code: https:/ /code.
visualstudio.com. This IDE tool is available for Windows, Linux, and macOS.

Next, we develop a simple program with the ESP32 board.

Demo 1 – building your first ESP32 program
In this section, we will write a simple program for the ESP32 board. We need three LEDs
including cable jumpers for this. We will turn on one LED from LED 1 to LED 3. For
implementation, I use the ESP-WROVER-KIT board.

Let's begin.

Wiring
We connect three LEDs on the ESP32 board GPIO. We then do the following wiring:

LED 1 is connected to IO12
LED 1 is connected to IO14
LED 1 is connected to IO26
All LED GND pins are connected to the ESP32 board GND

https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#setup-toolchain
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html#get-started-get-esp-idf
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com
https://code.visualstudio.com

Getting Started with ESP32 Chapter 1

[13]

You can see a wiring scheme in the following diagram:

Wiring on LED demo

Next, we create a project.

Getting Started with ESP32 Chapter 1

[14]

Creating a project
In general, there is no project template for the ESP32 program with SDK. However, we can
create a project with the project structure as shown in this screenshot:

A project structure

Each project has the following files:

Makefile on your project root
main folder
Program file (*.c)
component.mk file inside the main folder

In this demo, we create a project by creating a folder called blinking. Then, we create
a Makefile file. We also create a main folder. Inside the main folder, we create the
blinking.c and component.mk files.

We will write code for those files in the next section.

Writing the program
Now, we write scripts and codes on the Makefile, component.mk, and blinking.c files:

In the Makefile file, we declare our project name. This should be the same name1.
as the project folder. The following are Makefile scripts:

 PROJECT_NAME := blinking

 include $(IDF_PATH)/make/project.mk

Getting Started with ESP32 Chapter 1

[15]

component.mk is required for compiling purposes. You should create a2.
component file with this exact name. The content of the component.mk file is
empty:

 #
 # "main" pseudo-component makefile.
 #
 # (Uses default behavior of compiling all source files in
 directory, adding 'include' to include path.)

Now, we write code for our main program, blinking.c. Firstly, we declare our3.
required library headers as follows:

 #include <stdio.h>
 #include "freertos/FreeRTOS.h"
 #include "freertos/task.h"
 #include "driver/gpio.h"
 #include "sdkconfig.h"

We define our three LEDs on ESP32 GPIO. We use IO12, IO14, and IO26 pins4.
from ESP32 GPIO:

 #define LED1 12
 #define LED2 14
 #define LED3 26

A main entry of the program is app_main(). For this, we create a task and pass a5.
function, called blinking_task:

 void app_main()
 {
 xTaskCreate(&blinking_task, "blinking_task",
 configMINIMAL_STACK_SIZE, NULL, 5, NULL);
 }

The blinking_task() function performs GPIO initialization by calling6.
gpio_pad_select_gpio(). Then, we set the GPIO pin as output using the
gpio_set_direction() function. In the main loop, we turn on the LEDs one by
one. We call the turn_on_led() function to perform this task:

void blinking_task(void *pvParameter)
{
 // set gpio and its direction
 gpio_pad_select_gpio(LED1);
 gpio_set_direction(LED1, GPIO_MODE_OUTPUT);
 gpio_pad_select_gpio(LED2);
 gpio_set_direction(LED2, GPIO_MODE_OUTPUT);

Getting Started with ESP32 Chapter 1

[16]

 gpio_pad_select_gpio(LED3);
 gpio_set_direction(LED3, GPIO_MODE_OUTPUT);

 int current_led = 1;
 while(1) {
 turn_on_led(current_led);
 vTaskDelay(1000 / portTICK_PERIOD_MS);
 current_led++;
 if(current_led>3)
 current_led = 1;
 }
}

To turn on/off LEDs, we call gpio_set_level() with 1 or 0 parameters. If we7.
pass 1 on gpio_set_level(), it means we set a power voltage on that GPIO:

void turn_on_led(int led)
{
 // turn off all leds
 gpio_set_level(LED1, 0);
 gpio_set_level(LED2, 0);
 gpio_set_level(LED3, 0);

 switch(led)
 {
 case 1:
 gpio_set_level(LED1, 1);
 break;
 case 2:
 gpio_set_level(LED2, 1);
 break;
 case 3:
 gpio_set_level(LED3, 1);
 break;
 }
}

Now, save all programs.8.

Next, we configure the project before flashing on the ESP32 board.

Getting Started with ESP32 Chapter 1

[17]

Configuring the project
Now, we should configure our project using menuconfig. This tool is a part of the ESP32
toolchain that you have configured previously on your platform.

Open Terminal and navigate to your project directory. Then, you can type this command:

$ make menuconfig

You should get the dialog shown in the following screenshot:

Espressif project config

We configure our ESP32 serial port and then select the Serial flasher config menu.
From here, fill your serial port of the ESP32 board. You can see my ESP32 serial port from
the ESP-WROVER-KIT board here:

Getting Started with ESP32 Chapter 1

[18]

Setting a serial port for the ESP32 board

If complete, click the Save button. The menuconfig program will save your project
configuration. The program output can be seen in the following screenshot. You should see
that this tool generates the sdkconfig file into your current project directory:

A result of configuring a project

Now, your program is ready for compiling and flashing.

Getting Started with ESP32 Chapter 1

[19]

Compiling and flashing
After we configured our project, we can flash our program into the ESP32 board. We can
type this command on the current project directory from the following terminal:

$ make flash

This command performs compiling and flashing. If the make command is not found, you
should install make for your platform.

If you have configured a serial port of the ESP32 board, the program will be flashed.
Otherwise, you will get a timeout because the tool cannot find the ESP32 serial port. You
can see my program output on the flashing process in the following screenshot:

Flashing a program into the ESP32 board

If this succeeds, you should see lighting on LED 1, LED2, and LED 3.

Next, we develop the ESP32 program using Arduino Sketch.

Getting Started with ESP32 Chapter 1

[20]

Arduino programming for ESP32
Arduino is the biggest community for open source hardware. It has various Arduino
boards to fit your needs. Arduino also provides software to develop the Arduino program,
Sketch. Arduino Sketch can be downloaded at https:/ /www. arduino. cc/en/ Main/
Software.

Now, ESP32 boards support Arduino development. Technically, ESP32 development with
Arduino still uses Espressif SDK. You should set Arduino Sketch software to enable you to
work with ESP32 boards. You can configure this based on your platform. Please follow this
guideline on the following website: https:/ /github. com/ espressif/ arduino- esp32.

It is recommended to install ESP32 boards into Arduino software via Board Manager. Open
the Preferences dialog from Arduino, then put this URL into the board manager
URL: https://dl. espressif. com/ dl/ package_ esp32_ index. json:

Adding ESP32 boards into Arduino software

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32
https://github.com/espressif/arduino-esp32
https://dl.espressif.com/dl/package_esp32_index.json
https://dl.espressif.com/dl/package_esp32_index.json
https://dl.espressif.com/dl/package_esp32_index.json
https://dl.espressif.com/dl/package_esp32_index.json
https://dl.espressif.com/dl/package_esp32_index.json
https://dl.espressif.com/dl/package_esp32_index.json
https://dl.espressif.com/dl/package_esp32_index.json
https://dl.espressif.com/dl/package_esp32_index.json
https://dl.espressif.com/dl/package_esp32_index.json
https://dl.espressif.com/dl/package_esp32_index.json
https://dl.espressif.com/dl/package_esp32_index.json
https://dl.espressif.com/dl/package_esp32_index.json
https://dl.espressif.com/dl/package_esp32_index.json
https://dl.espressif.com/dl/package_esp32_index.json
https://dl.espressif.com/dl/package_esp32_index.json
https://dl.espressif.com/dl/package_esp32_index.json
https://dl.espressif.com/dl/package_esp32_index.json
https://dl.espressif.com/dl/package_esp32_index.json
https://dl.espressif.com/dl/package_esp32_index.json

Getting Started with ESP32 Chapter 1

[21]

When this is done, click OK.

Now, you can install ESP32 boards. To do this, open Boards Manager from the Tools
menu. Type esp32 on this form so you can see the esp32 package, as shown in the
following screenshot:

Installing ESP32 boards

After you have clicked Install, Arduino will download all required libraries for ESP32. If
done, we will see a list of ESP32 boards on the Arduino software. You can see this in the
following screenshot:

Getting Started with ESP32 Chapter 1

[22]

A list of ESP32 boards in Arduino

Now, your Arduino is ready for ESP32 boards.

Getting Started with ESP32 Chapter 1

[23]

Demo 2 - making an Arduino Sketch
program with ESP32
In this section, we develop an Arduino program for ESP32 boards. We will use the previous
demo, but we still use Arduino software. If you don't have experience with Arduino Sketch,
I recommend learning Sketch programming on this site: https:/ /www. arduino. cc/
reference/en/. Since ESP32 has two cores (core 0 and core 1), our Arduino program runs
one core. You don't need to worry which about core will be used by Arduino. You can
verify which core is used with the xPortGetCoreID() function.

We use the pinMode() function to set ESP32 GPIO pins as input or output. Then,1.
we can write digital values using the digitalWrite() function. Using the
previous demo, we can implement the demo using Sketch, as follows:

#define LED1 12
#define LED2 14
#define LED3 26

Let's set the current_let to 1. That meant that later will start turning the LEDs2.
with LED number 1.

int current_led = 1;

Every program developed with the help of Arduino IDE will contain the3.
setup() function. Code in setup function will run only on time at the beginning.
For now let’s setup the pins that will drives our LEDS as output pins.

void setup() {
 pinMode(LED1, OUTPUT);
 pinMode(LED2, OUTPUT);
 pinMode(LED3, OUTPUT);

}

This is a helper function that will get a led number as parameter and will turn off4.
all the LEDS and based on the value of the input parameter will turn on that LED
by using the digitalWrite() function.

void turn_on_led(int led)
{
 // turn off all leds
 digitalWrite(LED1, LOW);
 digitalWrite(LED2, LOW);
 digitalWrite(LED3, LOW);

https://www.arduino.cc/reference/en/
https://www.arduino.cc/reference/en/
https://www.arduino.cc/reference/en/
https://www.arduino.cc/reference/en/
https://www.arduino.cc/reference/en/
https://www.arduino.cc/reference/en/
https://www.arduino.cc/reference/en/
https://www.arduino.cc/reference/en/
https://www.arduino.cc/reference/en/
https://www.arduino.cc/reference/en/
https://www.arduino.cc/reference/en/
https://www.arduino.cc/reference/en/
https://www.arduino.cc/reference/en/

Getting Started with ESP32 Chapter 1

[24]

 switch(led)
 {
 case 1:
 digitalWrite(LED1, HIGH);
 break;
 case 2:
 digitalWrite(LED2, HIGH);
 break;
 case 3:
 digitalWrite(LED3, HIGH);
 break;
 }
}

The code in the loop() function will run continuously like in a while(1). For5.
now the code will turn on one LED every second. When the code reach the last
LED then will go back to the first one and the process will run forever.

void loop() {
 turn_on_led(current_led);
 delay(1000);
 current_led++;
 if(current_led>3)
 current_led = 1;
}

Save the program.6.

Now, you can set the ESP32 board target and its port, as shown in the following screenshot:

Configuring the ESP32 Wrover module

Getting Started with ESP32 Chapter 1

[25]

Now, you can compile and upload the Sketch program via Arduino software. If you
succeed, you can see the program output as shown in the following screenshot:

Uploading the Sketch program to the ESP32 board

If you still get errors, please verify your ESP32 board type and its serial port.

Getting Started with ESP32 Chapter 1

[26]

Summary
In this chapter, we have learned about and reviewed the ESP32 board. We have also set up
a development environment for ESP32 boards. At the end of the chapter, we developed a
blinking program for three LEDs using Espressif SDK. Lastly, we implemented the same
scenario using Arduino software.

In the next chapter, we will learn how to work with LCDs on the ESP32 board.

Further reading
For more information on ESP-IDF programming, I recommend reading: the ESP-IDF
Programming Guide, at https:/ /docs. espressif. com/ projects/ esp- idf/ en/ latest/ .

https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/

2
Making Visual Data and

Animation on an LCD
The ESP32 chip and module consists of general-purpose input/output (GPIO) pins to
enable sensing and actuating. In this chapter, we will learn how to read sensor data from
the ESP32 GPIO. We will also talk about using an LCD to display data with the ESP32 chip.
In addition to this, we will show sensory information such as temperature and humidity in
the LCD. Ultimately, we will build a simple IoT weather monitoring system with the ESP32
board.

We will see how to work with an LCD by following step-by-step instructions. You will also
learn how to use the ESP32 board to detect the weather and display it on LCD by the end of
this chapter.

The following topics will be covered in this chapter:

Introduction to ESP32 GPIO
Introduction to IoT for weather monitoring systems
Reading temperature and humidity from a sensor device
Displaying information using an LCD
Making a weather monitoring system

Technical requirements
Before we begin, make sure that you have the following things ready:

A computer with an OS, such as Windows, Linux, or Mac, installed.
An ESP32 development board. The ESP-WROVER-KIT board from Espressif is
recommended.
An ESP32 development environment configured on your computer.

Making Visual Data and Animation on an LCD Chapter 2

[28]

An DHT22 sensor module.
The CoolTerm tool, which can read and write data over serial communication
(UART). This is available for Windows, Linux, and Mac. We set our serial tool to
the ESP32 board with Baudrate 115200.

Introduction to ESP32 GPIO
The ESP32 chip features forty physical GPIO pads. Some GPIO pads cannot be used or do
not have the corresponding pin on the chip package. For development boards based on the
ESP32 chip or module, some board makers probably expose all ESP32 GPIO pins. However,
some board makers also expose ESP32 GPIO pins but add additional pins such as battery,
voltage, exclusive sensor, and ground.

Since there are many ESP32 development board models, we cannot explore all board
models. Instead, we will focus on the ESP-WROVER-KIT board from Espressif.

We can access GPIO pins on the ESP-WROVER-KIT board with three locations. You can see
these locations from the ESP-WROVER-KIT board in the following image. Some GPIO
labels are shown in the board body so that we can see all of the GPIO pins:

Figure 2-1: GPIO pins from an ESP-WROVER-KIT board

Making Visual Data and Animation on an LCD Chapter 2

[29]

Some GPIO pins are used for PWM, ADC, DAC, I2C, I2S, and SPI. You can find this GPIO
layout from the ESP-WROVER-KIT board in the following document: https:/ / dl.
espressif.com/dl/ schematics/ ESP- WROVER- KIT_ V4_1. pdf.

Now that we've picked a board on which to work, let's get a brief overview of IoT for
weather monitoring systems before we begin setting one up.

Introduction to IoT for weather monitoring
systems
A weather monitoring system senses the state of the atmosphere, such as its temperature,
humidity, and weather conditions (clear, stormy, and so on). To get the state of the
atmosphere, we need sensors.

We can design a simple model for an IoT weather monitoring system as shown next in
Figure 2-2. An IoT board with sensor devices can sense physical conditions such as
temperature and humidity. Some IoT weather monitoring systems can display their sensor
values on a monitor or LCD display:

Figure 2-2: A simple model for an IoT weather Monitoring System

Now that we've discussed the weather monitoring system and its basic architecture, let's
start building our weather monitoring system. In the next section, we'll learn how to read
temperature and humidity using a sensor device and an ESP32 board.

https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf
https://dl.espressif.com/dl/schematics/ESP-WROVER-KIT_V4_1.pdf

Making Visual Data and Animation on an LCD Chapter 2

[30]

Reading temperature and humidity from a
sensor device
In this section, we'll build a simple program to read temperature and humidity from sensor
devices. We'll use the DHT22 sensor module for this. This sensor device is easy to find on
online stores such as Adafruit, SparkFun, and AliExpress.

Our project scenario is to read temperature and humidity values from a sensor device.
Then, we will print sensor values on a serial Terminal. After doing this, we will implement
our hardware wiring and develop a program.

Wiring
Let's begin by exploring the DHT22 sensor module. This module can sense temperature
and humidity. In general, the DHT22 has four pins. You can see the sensor pinout in Figure
2-3:

Figure 2-3: A general pinout for a DHT22 sensor module

For our demo, we need to wire the hardware as follows:

Connect DHT22 pin 1 to the ESP32 board 3.3V.
Connect DHT22 pin 2 to the ESP32 board GPIO 26 (IO26). You can add a pull
resistor 4K7 (optional).
Connect DHT22 pin 4 to the ESP32 board GND. You can add a pull resistor 4K7
(optional).

Making Visual Data and Animation on an LCD Chapter 2

[31]

You can see my hardware wiring with the ESP-WROVER-KIT board and DHT22 in Figure
2-4:

Figure 2-4: A wiring sample from my hardware

Now that we have covered hardware wiring, let's move on to writing the program.

Building a program
Building a program for ESP32 is a multi-step process. Let's look at each step and begin our
build for the weather monitoring system:

Create a project called dhtdemo. Please read Chapter 1, Getting Started with1.
ESP32, which describes how to create an X project. Our main program is
the dhtdemo.c file.
To access the DHT22 sensor, we can use the DHT library from the ESP-IDF2.
component libraries: https:/ /github. com/ UncleRus/ esp- idf-lib. This project
consists of some drivers for sensor and actuator devices that are compatible with
the ESP32 chip/board. You can use these drivers for your own projects. In this
section, we use the dht driver to enable working with the DHT sensor device.

https://github.com/UncleRus/esp-idf-lib
https://github.com/UncleRus/esp-idf-lib
https://github.com/UncleRus/esp-idf-lib
https://github.com/UncleRus/esp-idf-lib
https://github.com/UncleRus/esp-idf-lib
https://github.com/UncleRus/esp-idf-lib
https://github.com/UncleRus/esp-idf-lib
https://github.com/UncleRus/esp-idf-lib
https://github.com/UncleRus/esp-idf-lib
https://github.com/UncleRus/esp-idf-lib
https://github.com/UncleRus/esp-idf-lib
https://github.com/UncleRus/esp-idf-lib
https://github.com/UncleRus/esp-idf-lib
https://github.com/UncleRus/esp-idf-lib
https://github.com/UncleRus/esp-idf-lib

Making Visual Data and Animation on an LCD Chapter 2

[32]

Copy the dht components folder from the esp-idf-lib project into your local3.
esp-idf/components folder. You can see that my dht component has been
copied in Figure 2-5:

Figure 2-5: Adding the dht component on ESP-IDF

Now, we will write our program on the dhtdemo.c file. Firstly, we define our4.
required libraries for our ESP32 board. The header files that will be loaded in our
program are as follows:

#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gpio.h"
#include "sdkconfig.h"

We declare the dht.h header to access the DHT library. We also define our DHT5.
model as DHT_TYPE_DHT22. Lastly, we set GPIO 26 for the DHT22 sensor
module:

#include <dht.h>
static const dht_sensor_type_t sensor_type = DHT_TYPE_DHT22;
static const gpio_num_t dht_gpio = 26;

Making Visual Data and Animation on an LCD Chapter 2

[33]

Now, we will write the main entry program, app_main(). We create a task by6.
calling the dht_task() function. Then, we call the dht_task() function using
xTaskCreate():

void app_main()
{
 xTaskCreate(&dht_task, "dht_task", configMINIMAL_STACK_SIZE, NULL, 5,
NULL);
}

In the dht_task() function, we read the temperature and humidity from DHT22 using
the dht_read_data() function. The results of the reading sensor are stored in two
variables: temperature and humidity. These sensor values will then be printed on the
Terminal using printf().

This program will read sensor data every five seconds. You can write this complete
program for the dht_task() function as follows:

void dht_task(void *pvParameter)
{
 int16_t temperature = 0;
 int16_t humidity = 0;
 while(1) {
 if (dht_read_data(sensor_type, dht_gpio, &humidity, &temperature)
== ESP_OK)
 printf("Humidity: %d%% Temp: %d^C\n", humidity / 10,
temperature / 10);
 else
 printf("Could not read data from sensor\n");

 vTaskDelay(5000 / portTICK_PERIOD_MS);
 }
}

Save all codes in the dhtdemo.c file and then compile and flash to the ESP32 board.

Running the program
Now, you can configure your project with the make menuconfig command. You can carry
out this task with the blinking project that we looked at in Chapter 1, Getting Started with
ESP32.

Making Visual Data and Animation on an LCD Chapter 2

[34]

After our program is flashed into the ESP32 board, we can use a serial program such as
PuTTY or CoolTerm. For the demo, I used CoolTerm. You can download this tool from the
following link: http:/ /freeware. the- meiers. org.

You can then open a connection to the ESP32 board. If this is successful, you will see our
program output on a serial tool. You can see my program output in Figure 2-6:

Figure 2-6: Program output on the CoolTerm serial app

Now that we've configured our sensors to read temperature and humidity, let's look at
displaying this information using an LCD.

http://freeware.the-meiers.org
http://freeware.the-meiers.org
http://freeware.the-meiers.org
http://freeware.the-meiers.org
http://freeware.the-meiers.org
http://freeware.the-meiers.org
http://freeware.the-meiers.org
http://freeware.the-meiers.org
http://freeware.the-meiers.org
http://freeware.the-meiers.org
http://freeware.the-meiers.org

Making Visual Data and Animation on an LCD Chapter 2

[35]

Displaying information using an LCD
In this section, we will work with an LCD on ESP32 boards. This demo uses the ESP-
WROVER-KIT v4 board, which has a built-in ILI9341 model LCD. You can read an ILI9341
LCD datasheet at the following link: https:/ /cdn- shop. adafruit. com/ datasheets/
ILI9341.pdf.

For implementation, we will use the TFT library for ESP32. This library can be found at the
following link: https:/ /github. com/ loboris/ ESP32_ TFT_ library. Now, let's build
hardware wiring for the project.

Hardware wiring
If you have the ESP-WROVER-KIT board, you don't need an additional LCD to perform
hardware wiring. Otherwise, if you use another LCD module, you can connect the LCD
module to the ESP32 board via ESP32 SPI pins. You can see this wiring based on the ESP-
WROVER-KIT board datasheet document in Figure 2-7:

https://cdn-shop.adafruit.com/datasheets/ILI9341.pdf
https://cdn-shop.adafruit.com/datasheets/ILI9341.pdf
https://cdn-shop.adafruit.com/datasheets/ILI9341.pdf
https://cdn-shop.adafruit.com/datasheets/ILI9341.pdf
https://cdn-shop.adafruit.com/datasheets/ILI9341.pdf
https://cdn-shop.adafruit.com/datasheets/ILI9341.pdf
https://cdn-shop.adafruit.com/datasheets/ILI9341.pdf
https://cdn-shop.adafruit.com/datasheets/ILI9341.pdf
https://cdn-shop.adafruit.com/datasheets/ILI9341.pdf
https://cdn-shop.adafruit.com/datasheets/ILI9341.pdf
https://cdn-shop.adafruit.com/datasheets/ILI9341.pdf
https://cdn-shop.adafruit.com/datasheets/ILI9341.pdf
https://cdn-shop.adafruit.com/datasheets/ILI9341.pdf
https://cdn-shop.adafruit.com/datasheets/ILI9341.pdf
https://cdn-shop.adafruit.com/datasheets/ILI9341.pdf
https://cdn-shop.adafruit.com/datasheets/ILI9341.pdf
https://cdn-shop.adafruit.com/datasheets/ILI9341.pdf
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library

Making Visual Data and Animation on an LCD Chapter 2

[36]

The datasheet can be viewed here:

Figure 2-7: Wiring for the LCD module on ESP32

The following is wiring for the ESP32 and LCD module:

LCD VCC to ESP32 VCC
LCD GND to ESP32 3.3V
LCD SCL to ESP32 SPI CLK (IO19)
LCD SDA to ESP32 MOSI (IO23)
LCD SDO to ESP32 MISO (IO25)
LCD CS to ESP32 CS (IO22)
LCD D/C to ESP32 D/CX (IO21)

Next, we will create a project.

Making Visual Data and Animation on an LCD Chapter 2

[37]

Creating a project
To create a project, follow these steps:

Create a project called lcddemo. Our main program is the lcddemo.c file.1.
Download and copy a project from the TFT library for ESP32: https:/ / github.2.
com/loboris/ ESP32_ TFT_ library. This library consists of the TFT LCD driver for
ESP32. We can show text and drawings on the TFT LCD.
Copy the contents of the components and tools folders into our project. The final3.
result of our project structure can be seen in Figure 2-8:

Figure 2-8: Project structure for lcddemo

Now, let's write a program to display circles on the LCD to discuss the project's structure.
Ensure that all external libraries are placed on the components folder, as shown in Figure
2-7.

https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library
https://github.com/loboris/ESP32_TFT_library

Making Visual Data and Animation on an LCD Chapter 2

[38]

Writing an ESP32 program
To write our program, we need to follow these steps:

Modify the tft_demo.c file from the TFT library for ESP32. For this, we will use1.
the circle_demo() function, as written here:

static void circle_demo()
{
 int x, y, r, n;
//In the upper part of the LCD display print the message “CIRCLE DEMO
 disp_header("CIRCLE DEMO");

Now draw some random circles on the LCD display using the TFT_drawCircle2.
function. The circles will be randomly positioned on the screen and will have a
random color with the help of the function random_color(). After that, the
bottom header will be updated with the number of drawn circles (for example,
208 CIRCLES).

 uint32_t end_time = clock() + GDEMO_TIME;
 n = 0;
 while ((clock() < end_time) && (Wait(0))) {
 x = rand_interval(8, dispWin.x2-8);
 y = rand_interval(8, dispWin.y2-8);
 if (x < y) r = rand_interval(2, x/2);
 else r = rand_interval(2, y/2);
 TFT_drawCircle(x,y,r,random_color());
 n++;
 }
 sprintf(tmp_buff, "%d CIRCLES", n);
 update_header(NULL, tmp_buff);
 Wait(-GDEMO_INFO_TIME);

Now is the time to not only draw some circles but also fill to them with colors3.
using the function TFT_fillCircle(). In the end, using the same values for x,
y and r but different random_color() values, the circles will have a different
filling and a different edge color.

 update_header("FILLED CIRCLE", "");
 TFT_fillWindow(TFT_BLACK);
 end_time = clock() + GDEMO_TIME;
 n = 0;
 while ((clock() < end_time) && (Wait(0))) {
 x = rand_interval(8, dispWin.x2-8);

Making Visual Data and Animation on an LCD Chapter 2

[39]

 y = rand_interval(8, dispWin.y2-8);
 if (x < y) r = rand_interval(2, x/2);
 else r = rand_interval(2, y/2);
 TFT_fillCircle(x,y,r,random_color());
 TFT_drawCircle(x,y,r,random_color());
 n++;
 }
 sprintf(tmp_buff, "%d CIRCLES", n);
 update_header(NULL, tmp_buff);
 Wait(-GDEMO_INFO_TIME);
}

Next, modify the tft_demo() function that calls the circle_demo() function:4.

void tft_demo() {

 ...

 // demo
 disp_header("Welcome to ESP32");
 circle_demo();

 while (1) {
 // do nothing
 }
}

Since we will use some components that are located on5.
<project>/components, we should tell the compiler to include these
components. We will add the component.mk file with our components included,
as follows:

COMPONENT_SRCDIRS := .
COMPONENT_ADD_INCLUDEDIRS := .

For the Makefile file, we can write these scripts as follows:6.

PROJECT_NAME := lcddemo

EXTRA_CFLAGS += --save-temps

include $(IDF_PATH)/make/project.mk

Making Visual Data and Animation on an LCD Chapter 2

[40]

Save all files before configuring our project to compile and flash our program7.
into the ESP32 board.

Now that we've created the program, let's configure our board.

Configuring the ESP-WROVER-KIT v4 board
Before we compile and flash our program to the ESP32 board, we should configure our
project. In this section, the ESP32 board model is ESP-WROVER-KIT v4. We configure the
LCD model and flash size using menuconfig. To do so, follow these steps:

Open the Terminal and navigate to your project folder.1.
Run menuconfig by typing the following command:2.

$ make menuconfig

You will get a form as shown in Figure 2-9. Select TFT Display DEMO3.
Configuration from this form:

Figure 2-9: Configuring the TFT Display demo

Making Visual Data and Animation on an LCD Chapter 2

[41]

You will get a form as shown in Figure 2-10. You can select Select predefined4.
display configuration:

Figure 2-10: Selecting the predefined display configuration

You will see a list of TFT modules as shown in Figure 2-11.5.
Since we are using ESP-WROVER-KIT v4, we will select the ESP-WROVER-KIT6.
Display option.

Making Visual Data and Animation on an LCD Chapter 2

[42]

You can select this option by pressing the Tab key on your keyboard:7.

Figure 2-11: Selecting ESP-WROVER-KIT Display

Next, we configure the flash size. Navigate back to the main menu as shown in8.
figure 2-9.
Select the Serial flasher config menu.9.
Then, select the Flash size option.10.

Making Visual Data and Animation on an LCD Chapter 2

[43]

After this is selected, you will see a list of flash sizes, as shown in Figure 2-12:11.

Figure 2-12: Selecting 4MB for flash size

Select 4 MB for flash size.12.
Save this configuration.13.
Select Exit to quit menuconfig.14.

Making Visual Data and Animation on an LCD Chapter 2

[44]

After we run menuconfig, we will get a config file, sdkconfig, as shown in Figure 2-13.
Open this file and ensure that this config has a value of CONFIG_SPIFFS_BASE_ADDR=
0x180000. If you have a value 180000 on that config, you should change it to 0x180000:

Figure 2-13: Editing the sdkconfig file

Now, your program is ready to compile and run in the next section.

Flashing and running a program
You can compile and flash our program using the following command:

$ make flash

Making Visual Data and Animation on an LCD Chapter 2

[45]

Make sure that the ESP32 board is connected to your computer.

If the program has been flashed onto the ESP32 board successfully, you should see circles
on the LCD. Figure 2-14 shows an example of the program:

Figure 2-14: Displaying circles

So, we have successfully displayed circles on the LCD. Now, let's go a little further and
learn to display image files on the LCD.

Displaying image files
If you want to display an image file on the LCD, we should attach picture files in our
program. For the demo, we will use picture files from the TFT library for the ESP32 library.
These picture files can be found in
the <project>/components/spiffs_image/image/images/ folder:

We will continue to work with the lcddemo project by copying1.
the disp_images() function from the TFT library into the ESP32 library. This
function will show the following picture files: test1.jpg, test2.jpg, and
test4.jpg.

Making Visual Data and Animation on an LCD Chapter 2

[46]

We will load all of the images from mounted storage:

static void disp_images() {
...
 // ** Show scaled (1/8, 1/4, 1/2 size) JPG images
 TFT_jpg_image(CENTER, CENTER, 3, SPIFFS_BASE_PATH"/images/test1.jpg",
NULL, 0);
 Wait(500);

 TFT_jpg_image(CENTER, CENTER, 2, SPIFFS_BASE_PATH"/images/test2.jpg",
NULL, 0);
 Wait(500);

 TFT_jpg_image(CENTER, CENTER, 1, SPIFFS_BASE_PATH"/images/test4.jpg",
NULL, 0);
 Wait(500);

Then, we will show JPG images to the LCD using the TFT_jpg_image() function:

 // ** Show full size JPG image
 tstart = clock();
 TFT_jpg_image(CENTER, CENTER, 0, SPIFFS_BASE_PATH"/images/test3.jpg",
NULL, 0);
 tstart = clock() - tstart;
 if (doprint) printf(" JPG Decode time: %u ms\r\n", tstart);
 sprintf(tmp_buff, "Decode time: %u ms", tstart);
 update_header(NULL, tmp_buff);
 Wait(-GDEMO_INFO_TIME);

We will also show JPG images to the LCD using the TFT_bmp_image() function:

 // ** Show BMP image
 update_header("BMP IMAGE", "");
 for (int scale=5; scale >= 0; scale--) {
 tstart = clock();
 TFT_bmp_image(CENTER, CENTER, scale,
SPIFFS_BASE_PATH"/images/tiger.bmp", NULL, 0);
 tstart = clock() - tstart;

 }
 else if (doprint) printf(" No file system found.\r\n");

Making Visual Data and Animation on an LCD Chapter 2

[47]

If there is no picture file, we print No file system found on the Terminal:

else if (doprint) printf(" No file system found.\r\n");

Modify the tft_demo() function to call the disp_images() function, as2.
follows:

void tft_demo() {

 // demo
 // disp_header("Welcome to ESP32");
 // circle_demo();

 disp_images();

 while (1) {
 // do nothing
 }
}

Save all files.3.
Compile and flash the program into the ESP32 board, as follows:4.

$ make flash

Compile our picture files as image files:5.

$ make makefs

Flash our image file into the ESP32 board:6.

$ make flashfs

Making Visual Data and Animation on an LCD Chapter 2

[48]

If this succeeds, you will see image files being displayed on the LCD. You can see a sample
output in Figure 2-15:

Figure 2-15: Displaying a picture from the file

Now that we've played around with the LCD, let's take the final step toward creating our
weather monitoring system.

Making a weather monitoring system
In this section, we'll build a simple weather monitoring system. We'll use the skills that
we've learned about, such as reading temperature and humidity from a DHT22 sensor
device. Ultimately we'll be able to display the temperature and humidity on the LCD after
reading from the sensor device.

Let's begin by creating a project.

Making Visual Data and Animation on an LCD Chapter 2

[49]

Creating a project
To simplify our weather monitoring system project, we will copy the previous project
named lcddemo and create a project called weather. Our main program is weather.c on
the main folder. You can see a project structure shown in figure 2-16:

Figure 2-16: Project structure for the weather system

Now, let's move on to hardware wiring.

Hardware wiring
When wiring hardware, we use the same wiring from the dhtdemo and lcddemo projects.

Making Visual Data and Animation on an LCD Chapter 2

[50]

The DHT22 sensor module is then connected to IO26. Furthermore, our LCD is connected
to SPI pins from the ESP32 board.

Writing a program
Let's start writing the program:

Copy lcddemo.c into the weather.c file, and then add the following code to1.
read temperature and humidity from the DHT22 sensor module on the
weather.c file. Sensor data will then be displayed on the LCD. Add the dht.h
header file:

#include <dht.h>
static const dht_sensor_type_t sensor_type = DHT_TYPE_DHT22;
static const gpio_num_t dht_gpio = 26;

We define the weather_system() function to read temperature and humidity2.
using the dht_read_data() function. We display data on the LCD using the
TFT_print() function, as follows:

First we will initialize the sensor variables:

void weather_system(){
 int y;

 disp_header("Weather System");

 TFT_setFont(DEFAULT_FONT, NULL);
 _fg = TFT_YELLOW;

 int16_t temperature = 0;
 int16_t humidity = 0;
 char tmp_buff[64];

Then, we read the DHT sensor using dht_read_data() and
display it on the LCD using the TFT_print() function:

if (dht_read_data(sensor_type, dht_gpio, &humidity,
&temperature) == ESP_OK)
 {
 y = 4;
 sprintf(tmp_buff, "Temperature: %d celsius",
temperature/10);
 TFT_print(tmp_buff, 4, y);
 y += TFT_getfontheight() + 4;

Making Visual Data and Animation on an LCD Chapter 2

[51]

 sprintf(tmp_buff, "Humidity: %d %%",
humidity/10);
 TFT_print(tmp_buff, 4, y);
 update_header(NULL, "Ready");
 }else{

If we don't get sensor data from the device, we give an error
message on the header of the LCD screen:

 }else{
 update_header(NULL, "Failed to read sensor
data");
 }

Call the weather_system() function into the main entry app_main() function:3.

void app_main()
{

 weather_system();
}

Save the code. 4.

Now that we have written the program, let's compile and flash this program to the ESP32
board.

Flashing and running
Now that we have written the program that displays the weather data from the sensor, let's
display the data on our LCD. You can compile and flash our program into the ESP32 board
with the following command:

$ make flash

Making Visual Data and Animation on an LCD Chapter 2

[52]

If this is successful, you should see temperature and humidity values on the LCD display.
You can see my program's output in Figure 2-17:

Figure 2-17: Displaying temperature and humidity on the LCD

We have successfully used the ESP32 board to create a weather monitoring system.

Summary
In this chapter, we looked at a brief introduction that weather systems. Here, we made a
simple ESP32 program to sense temperature and humidity using the DHT22 sensor
module. Furthermore, we worked with the LCD on the ESP32 board, and were able to
access the LCD modules through the ESP32 board. Lastly, we also displayed temperature
and humidity data from a sensor to the LCD display. You can now compile and flash any
program to your ESP32 board.

In the next chapter, we will learn how to build a simple game on an ESP32 board. We will
also cover gaming-embedded systems.

Making Visual Data and Animation on an LCD Chapter 2

[53]

Further reading
To support the information that we have explored in this chapter, I recommend reading the
following documents:

ESP32 MCU datasheet document: https:/ /www. espressif. com/en/ support/
download/ documents/ chips.
ESP-IDF Programming Guide document: https:/ / docs. espressif. com/
projects/ esp- idf/ en/ latest/ .
ESP-WROVER-KIT Getting Started Guide: https:/ / docs. espressif. com/
projects/ esp- idf/ en/ latest/ get-started/ get- started- wrover- kit. html.

https://www.espressif.com/en/support/download/documents/chips
https://www.espressif.com/en/support/download/documents/chips
https://www.espressif.com/en/support/download/documents/chips
https://www.espressif.com/en/support/download/documents/chips
https://www.espressif.com/en/support/download/documents/chips
https://www.espressif.com/en/support/download/documents/chips
https://www.espressif.com/en/support/download/documents/chips
https://www.espressif.com/en/support/download/documents/chips
https://www.espressif.com/en/support/download/documents/chips
https://www.espressif.com/en/support/download/documents/chips
https://www.espressif.com/en/support/download/documents/chips
https://www.espressif.com/en/support/download/documents/chips
https://www.espressif.com/en/support/download/documents/chips
https://www.espressif.com/en/support/download/documents/chips
https://www.espressif.com/en/support/download/documents/chips
https://www.espressif.com/en/support/download/documents/chips
https://www.espressif.com/en/support/download/documents/chips
https://www.espressif.com/en/support/download/documents/chips
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-wrover-kit.html

3
Building a Simple Game with an

Embedded ESP32 Board
In this chapter, we will look at developing our own game with an embedded ESP32 board
and some embedded modules. Here, we will learn how to work with joystick, buttons,
sound, and an LCD.

In this chapter, we will learn about the following topics:

Game-embedded systems
Joystick sensor modules
Working with sound buzzers
Building a simple embedded game

Technical requirements
Before we begin, make sure you have the following things ready:

A computer with an OS installed, such as Windows, Linux, or mac
An ESP32 development board – it is recommended to use the ESP-WROVER-KIT
v4 board from Espressif

Introducing game-embedded systems
You will be familiar with the Game Boy, an 8-bit handheld game console developed by
Nintendo. This console includes joystick, buttons, and an LCD. A joystick is used to move
an object from one place to another, while buttons are usually used for actions such as
firing and jumping.

Building a Simple Game with an Embedded ESP32 Board Chapter 3

[55]

A game embedded system is described in a general sense in figure 3-1. As well as the
features just mentioned, having a sound system increases a game's potential in terms of
entertainment. For this purpose, we need a sound actuator such as a speaker to generate
sounds for the game:

Figure 3-1: A general architecture of an embedded system for gaming

Next, we will review a joystick sensor module.

Introducing the joystick sensor module
If you have experience with playing games on consoles such as PlayStation or Xbox, you
will be familiar with using joystick control to manage game movements and perform
various actions. An analog joystick usually consists of two potentiometers. This sensor
generates 2D direction points.

There are many cheap analog joystick sensors available in online electronics stores such as
AliExpress and Alibaba. One of the analog joystick models is Thumb Joystick from
SparkFun, found at the following link: https:/ /www. sparkfun. com/ products/ 9032. You
can see this device in figure 3-2:

https://www.sparkfun.com/products/9032
https://www.sparkfun.com/products/9032
https://www.sparkfun.com/products/9032
https://www.sparkfun.com/products/9032
https://www.sparkfun.com/products/9032
https://www.sparkfun.com/products/9032
https://www.sparkfun.com/products/9032
https://www.sparkfun.com/products/9032
https://www.sparkfun.com/products/9032
https://www.sparkfun.com/products/9032
https://www.sparkfun.com/products/9032
https://www.sparkfun.com/products/9032
https://www.sparkfun.com/products/9032

Building a Simple Game with an Embedded ESP32 Board Chapter 3

[56]

Figure 3-2: a simple joystick sensor

An analog joystick usually has five pins: VCC, GND, Vx, Vy, and SW. The Vx and Vy pins
represent direction values from the device.

Another option is to use a joystick module kit. This is a complete kit that you use directly
on your board. You can find the SparkFun Joystick Shield Kit at the following link: https:/
/www.sparkfun.com/ products/ 9760. This form can be seen in figure 3-3:

Figure 3-3: The joystick module from SparkFun

https://www.sparkfun.com/products/9760
https://www.sparkfun.com/products/9760
https://www.sparkfun.com/products/9760
https://www.sparkfun.com/products/9760
https://www.sparkfun.com/products/9760
https://www.sparkfun.com/products/9760
https://www.sparkfun.com/products/9760
https://www.sparkfun.com/products/9760
https://www.sparkfun.com/products/9760
https://www.sparkfun.com/products/9760
https://www.sparkfun.com/products/9760
https://www.sparkfun.com/products/9760

Building a Simple Game with an Embedded ESP32 Board Chapter 3

[57]

Technically, an analog joystick can be defined as in figure 3-4. The movement of an analog
joystick is 2D. If we move the joystick to the left, we will get Vx approaching zero.
Otherwise, we can perform for Vy, as shown here:

Figure 3-4: The joystick navigation

Next, we'll implement the ESP32 program with the joystick sensor.

Working with the joystick sensor module
Connecting an analog joystick to the ESP32 is easy. You can just connect this device to the
analog pins. The ESP32 has two ADC1 and ADC2 pins, with some channels. You can find
the analog pins with their channels on the ESP32 in figure 3-5:

Building a Simple Game with an Embedded ESP32 Board Chapter 3

[58]

Figure 3-5: ADC pinout on ESP32

Some ADC2 pins are used for internal devices such as Wi-Fi. For the ESP-
WROVER-KIT board, GPIO 0, 2, 4, and 15 cannot be used for ADC due to
external connections for different purposes.

Wiring
In this section, we'll perform hardware wiring between the ESP32 and analog joystick. For
demo purposes, I will use the ESP-WROVER-KIT v4.1 board. We can connect our analog
joystick with the ESP32 on the following wiring:

Analog joystick 5V is connected to ESP32 5V
Analog joystick GND is connected to ESP32 GND
Analog joystick Vx is connected to ESP32 IO35 (ADC1 channel 7)
Analog joystick Vy is connected to ESP32 IO15 (ADC2 channel 3)

Building a Simple Game with an Embedded ESP32 Board Chapter 3

[59]

You can see the hardware wiring in figure 3-6, as follows:

Figure 3-6: The wiring for the ESP32 and analog joystick

Next, we write a project for the analog joystick and ESP32.

Creating a project
In this section, we will create a project called joystickdemo. You can follow the
instructions in Chapter 2, Making Visual Data and Animation on an LCD, Weather project, to
create a project. Figure 3-7 shows our project structure:

Figure 3-7: The project structure for joystickdemo

Our main program is the joystickdemo.c file. We can copy the file content from
weather.c from Chapter 2, Making Visual Data and Animation on an LCD, in the Weather
Project section.

Next, we'll write a program on the joystickdemo.c file.

https://cdp.packtpub.com/hands_on_internet_of_things_with_esp32/wp-admin/post.php?post=26&action=edit#post_25
https://cdp.packtpub.com/hands_on_internet_of_things_with_esp32/wp-admin/post.php?post=26&action=edit#post_25

Building a Simple Game with an Embedded ESP32 Board Chapter 3

[60]

Writing the program
Our program will read the analog joystick positions, x and y, through the ADC pins. Then,
we display these positions on the LCD.

Firstly, we modify the tft_demo() function. We call joystick_demo() in the
tft_demo() function as follows:

void tft_demo() {

 ...

 joystick_demo();

}

We declare the joystick_demo() function to read the analog joystick via ADC. The result
of the ADC measurement is displayed on the LCD. To retrieve analog data from ADC1, we
perform the following steps:

Set ADC bit length using the adc1_config_width() function
Set ADC attenuation with the adc1_config_channel_atten() function
To get ADC value, we can use the adc1_get_raw() function

For ADC2, we don't need to call the adc1_config_width() function. Instead, we
call adc2_get_raw() with the ADC bit-length parameter.

The following are the complete codes for the joystick_demo() function:

static void joystick_demo()
{
 int y;
 TFT_resetclipwin();
 adc1_config_width(ADC_WIDTH_12Bit);

 adc1_config_channel_atten(ADC1_CHANNEL_7, ADC_ATTEN_11db);
 adc2_config_channel_atten(ADC2_CHANNEL_3, ADC_ATTEN_11db);
 disp_header("JOYSTIK DEMO");
 update_header(NULL, "Move your joystick");
 char tmp_buff[64];
 int joyX, joyY;
 while(1){
 joyX = adc1_get_raw(ADC1_CHANNEL_7);
 adc2_get_raw(ADC2_CHANNEL_3,ADC_WIDTH_12Bit, &joyY);
 y = 4;

Building a Simple Game with an Embedded ESP32 Board Chapter 3

[61]

 sprintf(tmp_buff, "x: %d y: %d ", joyX,joyY);
 TFT_print(tmp_buff, 4, y);
 vTaskDelay(500 / portTICK_PERIOD_MS);

 // clear text
 TFT_clearStringRect(4,y,tmp_buff);
 tmp_buff[0]='\0';
 }
}

Save the program.

After doing this, we compile and flash this program onto the ESP32 board.

Running the program
You can compile and flash the joystickdemo program onto the ESP32. To do this, just
type this command:

$ make flash

Make sure the ESP32 serial port is correct.

After the screen is flashed, you can see the LCD display on the screen. Try to move the
dot position of the screen by changing direction using the analog joystick. Figure 3-8 shows
a sample of the program output on the LCD:

Figure 3-8: A sample of the program output on the LCD for the joystickdemo project

Building a Simple Game with an Embedded ESP32 Board Chapter 3

[62]

You can see this demo on my YouTube account at the following link: https:/ /youtu. be/
lIVEkXa16Fg

Next, we'll learn how to work with a sound buzzer on the ESP33 board.

Working with a sound buzzer
In this section, we'll work with sound. Most games usually use music to provide sound
background. For a simple sound device, we can use sound buzzer devices. We can use a
PC-mountable mini-speaker - PC Mount (12mm, 2.048kHz) from SparkFun, found at the
following link: https:/ /www. sparkfun. com/ products/ 7950. You can see this in Figure 3-9,
and you can also find some other sound buzzer models with low prices at AliExpress:

Figure 3-9: Mini Speaker - PC Mount

Next, we connect the sound buzzer to the ESP32 board.

Connecting the sound buzzer with the ESP32
A sound buzzer has two pins. One pin is connected to the GPIO and the other is connected
to the GND. We connect a sound buzzer to the ESP32 IO27 as follows:

Figure 3-10: The wiring for the sound buzzer and ESP32

Next, we write a program to access the sound buzzer device.

https://youtu.be/lIVEkXa16Fg
https://youtu.be/lIVEkXa16Fg
https://youtu.be/lIVEkXa16Fg
https://youtu.be/lIVEkXa16Fg
https://youtu.be/lIVEkXa16Fg
https://youtu.be/lIVEkXa16Fg
https://youtu.be/lIVEkXa16Fg
https://youtu.be/lIVEkXa16Fg
https://www.sparkfun.com/products/7950
https://www.sparkfun.com/products/7950
https://www.sparkfun.com/products/7950
https://www.sparkfun.com/products/7950
https://www.sparkfun.com/products/7950
https://www.sparkfun.com/products/7950
https://www.sparkfun.com/products/7950
https://www.sparkfun.com/products/7950
https://www.sparkfun.com/products/7950
https://www.sparkfun.com/products/7950
https://www.sparkfun.com/products/7950
https://www.sparkfun.com/products/7950
https://www.sparkfun.com/products/7950

Building a Simple Game with an Embedded ESP32 Board Chapter 3

[63]

Writing a program for the sound buzzer with the
ESP32
To do this, we create a project called buzzer. You can see that the project structure in figure
3-11. The buzzer.c file is our main program:

Figure 3-11: Project structure for the buzzer

Firstly, we declare all required header files and define IO27 for the sound buzzer:

#include <stdio.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/gpio.h"
#include "sdkconfig.h"

#define BUZZER 27

We also define the main entry on the app_main() function. This function will execute the
buzzer_task() function:

void app_main()
{
 xTaskCreate(&buzzer_task, "buzzer_task", configMINIMAL_STACK_SIZE,
NULL, 5, NULL);
}

Building a Simple Game with an Embedded ESP32 Board Chapter 3

[64]

Technically, we generate sound on the sensor by giving HIGH on IO27. We can use the
gpio_set_level() function for this. The following is an implementation of
the buzzer_task() function:

void buzzer_task(void *pvParameter)
{
 // set gpio and its direction
 gpio_pad_select_gpio(BUZZER);
 gpio_set_direction(BUZZER, GPIO_MODE_OUTPUT);

 int sounding = 1;
 while(1) {

 if(sounding==1){
 gpio_set_level(BUZZER, 1);
 sounding = 0;
 }
 else {
 gpio_set_level(BUZZER, 0);
 sounding = 1;
 }
 vTaskDelay(1000 / portTICK_PERIOD_MS);
 }
}

Once you have saved this program, you can compile and flash the program onto the ESP32
board.

When this has successfully completed, you should hear a sound from the buzzer device.

Demo – building a simple embedded game
In this section, we will develop a simple game. To do this, we integrate our previous
experiences using the LCD, analog joystick, and sound buzzer. We will build a ball game
here. For the implementation of this game project, we use the the ESP-WROVER-KIT for
ESP32 board.

Let's start!

Building a Simple Game with an Embedded ESP32 Board Chapter 3

[65]

The game scenario
Each game has a scenario. Some games also define some levels for users. In this project,
we'll make a simple game scenario. We define our game flowchart in Figure 3-12, as
follows:

Figure 3-12: A game scenario for a ball-hitting game

We can build a game scenario as follows:

Initialize a game by populating a circle with a different radius. These circles are1.
represented as sprites.
Set our ball sprite on a certain coordinate.2.
The user can move the ball sprite using the analog joystick.3.
If our ball is inside a circle, we turn on the sound buzzer for a few seconds.4.
If not, we don't do anything.5.
If all circles are deleted, the game will be completed. Game over will be6.
displayed on the LCD.

Next, we perform wiring and writing a program for the game.

Building a Simple Game with an Embedded ESP32 Board Chapter 3

[66]

Hardware wiring
We'll integrate our wiring from the joystickdemo and buzzer projects. You can check
them in the previous section of this chapter.

Developing the game program
Now, you can create a project called game. You can copy a project from Chapter 2, Making
Visual Data and Animation on an LCD, Weather Project. Figure 3-13 shows our project
structure:

Figure 3-13. Project structure for game.

Building a Simple Game with an Embedded ESP32 Board Chapter 3

[67]

To detect collision between our sprite and circle sprites, we can use a simple method. This
involves calculating the distance between our position and circle center point. Then, we
compare the point-to-circle distance and circle radius. If our distance is lower than the circle
radius, this means that our sprite hits the circle. This is demonstrated in Figure 3-14:

Figure 3-14: A formula to detect a sprite collision

Now, we modify the tft_demo() function codes on game.c. We call the game_demo()
function on the end of the code lines from the tft_demo() function, as follows:

void tft_demo() {

 ...
 game_demo();

}

Our game scenario is implemented in the game_demo() function.

Firstly, we initialize our circle sprites, ADC, and sound buzzer, as follows:1.

static void game_demo()
{
 int x, y, r, i, n;
 n = 10;
 Circle_Sprite circles[n];

 // initialize ADC
 adc1_config_width(ADC_WIDTH_12Bit);
 adc1_config_channel_atten(ADC1_CHANNEL_7, ADC_ATTEN_11db);
 adc2_config_channel_atten(ADC2_CHANNEL_3, ADC_ATTEN_11db);

Building a Simple Game with an Embedded ESP32 Board Chapter 3

[68]

 // set gpio and its direction for buzzer
 gpio_pad_select_gpio(BUZZER);
 gpio_set_direction(BUZZER, GPIO_MODE_OUTPUT);

 // initialize screen
 TFT_resetclipwin();
 disp_header("Circle Game Demo");
 update_header(NULL, "Move your joystick to circle");

We generate a random position and radius for all circles, and save all circle data2.
in the circles[] variable, as follows:

 // generate circles
 for(i=0;i<n;i++){
 x = rand_interval(16, dispWin.x2-16);
 y = rand_interval(32, dispWin.y2-32);

 r = rand_interval(8, 16);
 color_t c = random_color();
 TFT_fillCircle(x,y,r,c);
 circles[i].x = x;
 circles[i].y = y;
 circles[i].r = r;
 circles[i].deleted = 0;
 circles[i].color = c;
 }

We show our sprite with a current position of x=100 and y=100:3.

 int joyX, joyY;
 int running = 1;
 r = 8;
 int curr_x = 100, curr_y = 100;
 int cx = 151, cy = 212;

 TFT_fillCircle(curr_x,curr_y,r,TFT_RED);
 vTaskDelay(1000 / portTICK_PERIOD_MS);
 TFT_drawCircle(curr_x,curr_y,r,TFT_BLACK);

 char tmp_buff[64];
 int sound = 0;

Now, we perform looping with while() syntax. For this, we read the analog4.
joystick and change our sprite position based on the analog joystick input.

We also detect whether our sprite hits or not by calling the check_insideCircle()
function. If it does, we delete our circle from the screen.

Building a Simple Game with an Embedded ESP32 Board Chapter 3

[69]

If our sprite moves to out of the boundaries of the LCD, we put it on the end of the LCD
position by setting curr_x and curr_y.

Lastly, if all circles are hit, we finish our game:5.

 while(running){
 joyX = adc1_get_raw(ADC1_CHANNEL_7);
 adc2_get_raw(ADC2_CHANNEL_3,ADC_WIDTH_12Bit, &joyY);

 joyX = map_to_scren(joyX,0,4095,0,dispWin.x2);
 joyY = map_to_scren(joyY,0,4095,0,dispWin.y2);
 // validate point to screen
 curr_x = curr_x + joyX - cx;
 curr_y = curr_y + joyY - cy;

Check if the cursor is outside of our screen and adjust the values to keep it on the screen.

 if(curr_x<8)
 curr_x = 8;
 if(curr_x>(dispWin.x2-8))
 curr_x = dispWin.x2 - 8;
 if(curr_y<32)
 curr_y = 32;
 if(curr_y>(dispWin.y2-32))
 curr_y = dispWin.y2-32;

Looping over all circles that we keep in the circles[] array and skipping the6.
ones that were previously deleted, we need to check if our ball is inside the target
circle. This is done by the check_insideCircle() function. If that is the case,
based on the stored coordinates, we will fill the circle with black (TFT_BLACK),
the same color as our background, thus giving the impression that the circle has
disappeared.

 // check a ball inside a circle
 for(i=0;i<n;i++){
 if(circles[i].deleted == 1)
 continue;
 if(check_insideCircle(curr_x,curr_y,circles[i])==1){
 gpio_set_level(BUZZER, 1);
 sound = 1;
 circles[i].deleted = 1;
 TFT_fillCircle(circles[i].x,circles[i].y,circles[i].r,TFT_BLACK);
 break;
 }
 }
 TFT_fillCircle(curr_x,curr_y,r,TFT_RED);

Building a Simple Game with an Embedded ESP32 Board Chapter 3

[70]

Change the color to yellow and then to black again. Then, play a short beep on7.
buzzer.

 _fg = TFT_YELLOW;
 sprintf(tmp_buff, "x: %d y: %d ", curr_x,curr_y);
 TFT_print(tmp_buff, 4, 4);
 vTaskDelay(200 / portTICK_PERIOD_MS);
 TFT_fillCircle(curr_x,curr_y,r,TFT_BLACK);
 _fg = TFT_BLACK;
 TFT_print(tmp_buff, 4, 4);
 if(sound==1){
 gpio_set_level(BUZZER, 0);
 sound = 0;
 }

If it is the last circle on the screen, then it is the end of the game since all the circles were hit.

 // check if finished
 int nn = 0;
 for(i=0;i<n;i++){
 if(circles[i].deleted == 1)
 nn++;
 }
 if(nn==n)
 break;
 }

At the finishing stage, we show Game Over on the LCD using the TFT_print()8.
function, as follows:

 TFT_resetclipwin();
 disp_header("ESP32 Game DEMO");
 TFT_setFont(COMIC24_FONT, NULL);
 int tempy = TFT_getfontheight() + 4;
 _fg = TFT_ORANGE;
 TFT_print("ESP32-", CENTER, (dispWin.y2-dispWin.y1)/2 - tempy);
 TFT_setFont(UBUNTU16_FONT, NULL);
 _fg = TFT_CYAN;
 TFT_print("Game Over", CENTER, LASTY+tempy);
 tempy = TFT_getfontheight() + 4;
 TFT_setFont(DEFAULT_FONT, NULL);
 while(1){

 }
}

Building a Simple Game with an Embedded ESP32 Board Chapter 3

[71]

We can implement object collision in the check_insideCircle() function. For this, we
will use a math formula from Figure 3-14. You can write codes for the
check_insideCircle() function as follows:

int check_insideCircle(int x, int y, Circle_Sprite sp){
 int d = sqrt(pow(x-sp.x,2)+pow(y-sp.y,2));

 if(d<=sp.r)
 return 1;
 else{
 int rr = d - sp.r - 8;
 if(rr<=0)
 return 1;
 else
 return 0;
 }
}

Save this program.9.

You are now ready to compile and flash the program onto the ESP32 board.

Playing the game
Compile and flash our game project onto the ESP32.

To apply a game, you move your sprite to hit all circles. If all circles are hit, a game will
finish. You can see a form of the game program in Figure 3-15:

Building a Simple Game with an Embedded ESP32 Board Chapter 3

[72]

Figure 3-15: A ball-hitting game

I have recorded how to play this game on my YouTube account. You can see it at this
link: https://youtu. be/ sXmZ1pJ_ l1E.

Summary
We have learned how to work with an analog joystick to control movement, as well as
exploring a simple sound device with a sound buzzer and developing a simple game. We
hit all circles in order to finish the game.

In the next chapter, we will make a sensor-monitoring logger.

https://youtu.be/sXmZ1pJ_l1E
https://youtu.be/sXmZ1pJ_l1E
https://youtu.be/sXmZ1pJ_l1E
https://youtu.be/sXmZ1pJ_l1E
https://youtu.be/sXmZ1pJ_l1E
https://youtu.be/sXmZ1pJ_l1E
https://youtu.be/sXmZ1pJ_l1E
https://youtu.be/sXmZ1pJ_l1E
https://youtu.be/sXmZ1pJ_l1E
https://youtu.be/sXmZ1pJ_l1E
https://youtu.be/sXmZ1pJ_l1E

4
Building a Sensor Monitoring

Logger
Storing sensor data in external storage can make our IoT system more reliable. In this
chapter, we will explore how to store sensor data in external storage, such as SD cards and
microSD cards.

In this chapter, we will cover the following topics:

Introducing the sensor-monitoring logger
Accessing microSD cards from the ESP32
Storing sensor data in external storage
Building a simple sensor monitoring logger

Technical requirements
Before we begin, make sure you have the following things ready:

A computer with an OS installed, such as Windows, Linux, or macOS.
An ESP32 development board. The ESP-WROVER-KIT v4 board from Espressif is
recommended for this.

Introducing the sensor monitoring logger
A logging system is a system that can write data and information.

Data and information could include sensor data, system events, and error messages. All
data and information is usually stored in external storage such as SD cards, microSD cards,
or on a hard disk.

Building a Sensor Monitoring Logger Chapter 4

[74]

In general, a logging system can be described as in the following figure. An MCU with
sensor devices attached can sense things such as temperature and humidity. This sensor
data can also be stored in external storage:

Figure 4-1: A general model for a logging system

In this chapter, we explore how to work with external storage from an ESP32 board. We
will build a simple logging system to store sensor data in external storage.

Accessing a microSD card from the ESP32
To work with external storage such as SD and microSD cards, we should have an
SD/microSD card breakout device. We attach this breakout device into the ESP32 board
through SPI and SDMC pins.

SD/microSD card breakout devices are widely available in electronics stores. For example,
you can use the SparkFun microSD Transflash Breakout. You can attach a microSD card
into this breakout, which you can find at SparkFun's website: https:/ / www.slparkfun.
com/products/544. A form of the SparkFun microSD Transflash Breakout is shown in the
following photo:

https://www.sparkfun.com/products/544
https://www.sparkfun.com/products/544
https://www.sparkfun.com/products/544
https://www.sparkfun.com/products/544
https://www.sparkfun.com/products/544
https://www.sparkfun.com/products/544
https://www.sparkfun.com/products/544
https://www.sparkfun.com/products/544
https://www.sparkfun.com/products/544
https://www.sparkfun.com/products/544
https://www.sparkfun.com/products/544
https://www.sparkfun.com/products/544

Building a Sensor Monitoring Logger Chapter 4

[75]

Figure 4-2: SparkFun microSD Transflash Breakout

If you prefer to use an SD card with the ESP32, you can choose a breakout device for an SD
card. For example, you can use the SparkFun SD/MMC Card Breakout. You can get this
device on the official website: https:/ /www.sparkfun. com/ products/ 12941. A form of the
SparkFun SD/MMC Card Breakout can be seen, here:

Figure 4-3: SparkFun SD/MMC Card Breakout

Next, we will develop a program for the ESP32 to access microSD cards.

https://www.sparkfun.com/products/12941
https://www.sparkfun.com/products/12941
https://www.sparkfun.com/products/12941
https://www.sparkfun.com/products/12941
https://www.sparkfun.com/products/12941
https://www.sparkfun.com/products/12941
https://www.sparkfun.com/products/12941
https://www.sparkfun.com/products/12941
https://www.sparkfun.com/products/12941
https://www.sparkfun.com/products/12941
https://www.sparkfun.com/products/12941
https://www.sparkfun.com/products/12941
https://www.sparkfun.com/products/12941

Building a Sensor Monitoring Logger Chapter 4

[76]

Demo – accessing microSD cards from the
ESP32
In this section, we develop a simple program to access a microSD card from the ESP32. For
the demo, I use the ESP-WROVER-KIT v4 board. Fortunately, the ESP-WROVER-KIT v4
board has a built-in microSD card breakout that is connected to SDMMC pins.

Your ESP32 board should be connected to the microSD card breakout to perform this demo.
You also need a microSD storage card with a small size, such as 1 GB, 2 GB or 4 GB. Your
microSD card storage should be formatted as FAT.

Our demo scenario is aimed at creating a file named test.txt on a microSD card. Then,
we read the content of the test.txt file and print this to the serial Terminal.

Now, you can create an ESP32 project called sdcard. Our main project file is sdcard.c
and is located in the main folder. Firstly, we declare all required header files, including
sdmmc and sdspi:

#include <stdio.h>
#include <string.h>
#include <sys/unistd.h>
#include <sys/stat.h>
#include "esp_err.h"
#include "esp_log.h"
#include "esp_vfs_fat.h"
#include "driver/sdmmc_host.h"
#include "driver/sdspi_host.h"
#include "sdmmc_cmd.h"

Depending on your microSD card breakout model, you can access this breakout via SPI or
SDMMC. If you use an SPI connection on a microSD card breakout, you should define SPI
pins on our codes. Declare the USE_SPI_MODE syntax on these codes, as follows:

// To enable SPI mode, uncomment the following line:
// #define USE_SPI_MODE

#ifdef USE_SPI_MODE
#define PIN_NUM_MISO 2
#define PIN_NUM_MOSI 15
#define PIN_NUM_CLK 14
#define PIN_NUM_CS 13
#endif //USE_SPI_MODE

Building a Sensor Monitoring Logger Chapter 4

[77]

Change the SPI pins with your hardware configuration to use the SPI connection on a
microSD card. The pins include PIN_NUM_MISO, PIN_NUM_MOSI, PIN_NUM_CLK,
and PIN_NUM_CS.

Now, we should write code for the main entry on the app_main() function. We initialize
our GPIO for microSD via SPI or SDMMC:

void app_main(void)
{
 ESP_LOGI(TAG, "Initializing SD card");

#ifndef USE_SPI_MODE
 ESP_LOGI(TAG, "Using SDMMC peripheral");
 sdmmc_host_t host = SDMMC_HOST_DEFAULT();
 sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();

 gpio_set_pull_mode(15, GPIO_PULLUP_ONLY); // CMD, needed in 4- and 1-
line modes
 gpio_set_pull_mode(2, GPIO_PULLUP_ONLY); // D0, needed in 4- and 1-line
modes
 gpio_set_pull_mode(4, GPIO_PULLUP_ONLY); // D1, needed in 4-line mode
only
 gpio_set_pull_mode(12, GPIO_PULLUP_ONLY); // D2, needed in 4-line mode
only
 gpio_set_pull_mode(13, GPIO_PULLUP_ONLY); // D3, needed in 4- and 1-
line modes

#else
 ESP_LOGI(TAG, "Using SPI peripheral");

 sdmmc_host_t host = SDSPI_HOST_DEFAULT();
 sdspi_slot_config_t slot_config = SDSPI_SLOT_CONFIG_DEFAULT();
 slot_config.gpio_miso = PIN_NUM_MISO;
 slot_config.gpio_mosi = PIN_NUM_MOSI;
 slot_config.gpio_sck = PIN_NUM_CLK;
 slot_config.gpio_cs = PIN_NUM_CS;
#endif //USE_SPI_MODE

We continue to mount our microSD into the ESP32 using esp_vfs_fat_sdmmc_mount().
We mount our microSD storage as the "/sdcard" driver. If we succeed in mounting
microSD storage into the ESP32, we can print our microSD storage into the Terminal
using sdmmc_card_print_info():

 // Options for mounting the filesystem.
 esp_vfs_fat_sdmmc_mount_config_t mount_config = {
 .format_if_mount_failed = false,
 .max_files = 5,

Building a Sensor Monitoring Logger Chapter 4

[78]

 .allocation_unit_size = 16 * 1024
 };

 sdmmc_card_t* card;
 esp_err_t ret = esp_vfs_fat_sdmmc_mount("/sdcard", &host, &slot_config,
&mount_config, &card);

 if (ret != ESP_OK) {
 if (ret == ESP_FAIL) {
 ESP_LOGE(TAG, "Failed to mount filesystem. "
 "If you want the card to be formatted, set
format_if_mount_failed = true.");
 } else {
 ESP_LOGE(TAG, "Failed to initialize the card (%s). "
 "Make sure SD card lines have pull-up resistors in place.",
esp_err_to_name(ret));
 }
 return;
 }

 // Card has been initialized, print its properties
 sdmmc_card_print_info(stdout, card);

At this stage, our program has mounted the microSD storage, so we can access it. We use
normal file operation in C program, as well as the fopen(), fprintf(), and fclose()
functions for file manipulation.

The following is a program sample to create a file, write data into the file, and read the
content of a file:

 // Use POSIX and C standard library functions to work with files.
 // First create a file.
 ESP_LOGI(TAG, "Opening file");
 FILE* f = fopen("/sdcard/test.txt", "w");
 if (f == NULL) {
 ESP_LOGE(TAG, "Failed to open file for writing");
 return;
 }
 ESP_LOGI(TAG, "Writing data into a file");
 fprintf(f, "Hello %s!\n", card->cid.name);
 fprintf(f, "This is the content 1\n");
 fprintf(f, "This is the content 2\n");
 fclose(f);
 ESP_LOGI(TAG, "File written");

 // Open renamed file for reading
 ESP_LOGI(TAG, "Reading file");
 f = fopen("/sdcard/test.txt", "r");

Building a Sensor Monitoring Logger Chapter 4

[79]

 if (f == NULL) {
 ESP_LOGE(TAG, "Failed to open file for reading");
 return;
 }
 char line[64];
 while (fgets(line, sizeof(line), f) != NULL){
 ESP_LOGI(TAG, "Read from file: '%s'", line);
 }
 fclose(f);

Lastly, you should unmount the microSD storage from the ESP32 if you don't access the
file. We can call the esp_vfs_fat_sdmmc_unmount() function to unmount a microSD
storage card:

 esp_vfs_fat_sdmmc_unmount();
 ESP_LOGI(TAG, "Card unmounted");

Save our program on sdcard.c.

Compile and flash our project, sdcard, onto the ESP32 board. For testing, open a serial
application such as CoolTerm, and connect to the ESP32 board. You should see file
operation information in the serial Terminal, as shown in the following screenshot:

Figure 4-4: Program output from the sdcard program

Building a Sensor Monitoring Logger Chapter 4

[80]

If you unplug the microSD storage from the ESP32 board to your computer, you should see
the TEST.TXT file in the microSD storage. The contents of the TEST.TXT file should be as
follows:

Hello <sdcard_id>
This is the content 1
This is the content 2

<sdcard_id> is your storage ID name.

Storing sensor data on a microSD card
Technically, we can store any data of a certain file type on an SD card and microSD card.
We can also store sensor data in external storage.

For demo purposes, we sense temperature and humidity with the DHT sensor. We use the
same wiring from the dhtdemo project in Chapter 2, Making Visual Data and Animation
on an LCD. Our scenario is to sense temperature and humidity and then store them in
microSD storage.

We clone our previous project, sdcard. Then, we change to a new project by naming
it sdcarddht. We should then rename the main program file sdcard.c to sdcarddht.c.
We modify codes on file operations to read temperature and humidity from DHT by calling
the dht_read_data() function. After obtaining sensor data, we store it into a file named
sensor.txt:

 ESP_LOGE(TAG, "Reading sensor data");

 if (dht_read_data(sensor_type, dht_gpio, &humidity, &temperature)
== ESP_OK)
 {
 printf("Humidity: %d%% Temp: %d^C\n", humidity / 10,
temperature / 10);
 FILE* f = fopen("/sdcard/sensor.txt", "a");
 if (f == NULL) {
 ESP_LOGE(TAG, "Failed to open file for writing");
 return;
 }
 fprintf(f, "Humidity: %d%% Temp: %d^C\n", humidity / 10,
temperature / 10);
 fclose(f);
 }
 else
 printf("Could not read data from sensor\n");

Building a Sensor Monitoring Logger Chapter 4

[81]

Now, save the code.

Now, you can compile and flash a program into the ESP32 board. Open a serial application
to see the program output from the sdcardht project. The following screenshot shows a
sample of the program output from the sdcardht project:

Figure 4-5: Program output from the sdcardht project

Project – building a sensor monitoring
logger
In this section, we build a sensor monitoring logger with an ESP32 and a DHT module.
Here, we will store all sensor data in a CSV file on the microSD storage. We can visualize
our sensor data from the CSV file using a visual tool such as Excel.

Let's start!

Building a Sensor Monitoring Logger Chapter 4

[82]

Designing our program
Technically, we can develop our logger project by designing a flow chart, as shown in the
following diagram. We use a deep-sleep feature from the ESP32 chip to work with sleep
mode:

Figure 4-6: Program design for the logger project

We can start implementing our program scenario based on the flowchart in figure 4-6 as
follows:

We will check if the program runs after sleep mode or not.
If yes, we perform our sensing and storing sensor data. If not, we perform the
sleep mode operation.
We initialize our sensor and microSD storage on the ESP32 board.
We store sensor data in microSD storage after sensing temperature and humidity
with the DHT module.
After storing the sensor data, the program will enter sleep mode.

In this project, we use a timer to wake our program from sleep mode.

Building a Sensor Monitoring Logger Chapter 4

[83]

Writing the program
We can clone our previous project, sdcardht, in order to make our demonstration easy.
We rename the old project with a new name called logger. Our main program file is
logger.c.

Firstly, we declare our sleep_enter_time for sleep mode operation:1.

static RTC_DATA_ATTR struct timeval sleep_enter_time;

We can calculate sleep duration by comparing the starting time and the current time. We
will put the sleep duration value on the sleep_time_ms variable:

 struct timeval now;
 gettimeofday(&now, NULL);
 int sleep_time_ms = (now.tv_sec - sleep_enter_time.tv_sec) * 1000 +
(now.tv_usec - sleep_enter_time.tv_usec) / 1000;

To check if our program runs after sleep mode or not, we can use the2.
esp_sleep_get_wakeup_cause() function. We will
get ESP_SLEEP_WAKEUP_TIMER if our program wakes up from sleep mode.
Then, we perform sensing using the DHT module, and store sensor data on the3.
microSD storage:

 switch (esp_sleep_get_wakeup_cause()) {
 case ESP_SLEEP_WAKEUP_TIMER: {
 printf("Wake up from timer. Time spent in deep sleep: %dms\n",
sleep_time_ms);

 // Options for mounting the filesystem.
 esp_vfs_fat_sdmmc_mount_config_t mount_config = {
 .format_if_mount_failed = false,
 .max_files = 5,
 .allocation_unit_size = 16 * 1024
 };

Building a Sensor Monitoring Logger Chapter 4

[84]

After the ESP32 is started after a deep sleep, the information about the card needs4.
to be set up again in variable mount_config. The next step is to mount the
"/sdcard" mount point and to ensure that the operation is completed without
any errors. In case of errors, depending on the error, some helper messages will
be printed on the serial terminal.

 sdmmc_card_t* card;
 esp_err_t ret = esp_vfs_fat_sdmmc_mount("/sdcard", &host,
&slot_config, &mount_config, &card);

 if (ret != ESP_OK) {
 if (ret == ESP_FAIL) {
 printf("Failed to mount filesystem. "
 "If you want the card to be formatted, set
format_if_mount_failed = true.\n");
 } else {
 printf("Failed to initialize the card (%s). "
 "Make sure SD card lines have pull-up resistors in
place.\n", esp_err_to_name(ret));
 }
 return;
 }

 // Card has been initialized, print its properties
 sdmmc_card_print_info(stdout, card);

 printf("Reading sensor data\n");

Now that the card is mounted without any errors, we can read the values from5.
the DHT sensor. Open the file "/sdcard/logger.csv" in the append mode (see
the second parameter of the fopen function), taking care not to overwrite the
previous values, and write the current humidity and temperature in the file by
using the fprintf() function.

Now that a new record is added to the file "/sdcard/logger.csv", we can close the file
by calling the function fclose and passing the file descriptor.

 if (dht_read_data(sensor_type, dht_gpio, &humidity,
&temperature) == ESP_OK)
 {
 printf("Humidity: %d%% Temp: %d^C\n", humidity / 10,
temperature / 10);
 FILE* f = fopen("/sdcard/logger.csv", "a");
 if (f == NULL) {
 printf("Failed to open file for writing\n");
 return;

Building a Sensor Monitoring Logger Chapter 4

[85]

 }
 fprintf(f, "%d,%d\n", humidity / 10, temperature / 10);
 fclose(f);
 }
 else
 printf("Could not read data from sensor\n");

 // All done, unmount partition and disable SDMMC or SPI
peripheral

Now that we have the latest reading stored on our file on the SD card and the file6.
is closed, we should unmount the card and prepare it for another deep sleep
period. After that, the same process will be done repeatedly.

 esp_vfs_fat_sdmmc_unmount();
 printf("Card unmounted\n");

 break;
 }
 case ESP_SLEEP_WAKEUP_UNDEFINED:
 default:
 printf("Not a deep sleep reset\n");
 }
 vTaskDelay(1000 / portTICK_PERIOD_MS);

To enable our program to enter sleep mode, we call esp_deep_sleep_start(). Before
calling esp_deep_sleep_start(), we set our wake-up timer. In this program, we wake
up every 20 seconds:

 const int wakeup_time_sec = 20;
 printf("Enabling timer wakeup, %ds\n", wakeup_time_sec);
 esp_sleep_enable_timer_wakeup(wakeup_time_sec * 1000000);

 esp_deep_sleep_start();

Save all programs.7.

Building a Sensor Monitoring Logger Chapter 4

[86]

Running the program
Now, you can compile and upload the logger project onto the ESP32 board. If done, you
can use the serial application to see the program output. The following screenshot shows an
example of the program output from the logger project:

Figure 4-7: Program output from the logger project

The logger project will generate a logger.csv file. You can use Microsoft Excel to
visualize the logger.csv file. You can see a sample visualization of the sensor data in the
following screenshot:

Building a Sensor Monitoring Logger Chapter 4

[87]

Figure 4-8: Visualizing sensor data with Microsoft Excel

Summary
In this chapter, we have learned how to work with external storage, such as SD cards and
microSD cards, on an ESP32 board. We also stored our sensor data into external storage.
Lastly, we used a sensor monitoring logger by applying sleep mode after sensing and
storing sensor data.

Next, we will learn how to communicate and interact with the internet on an ESP32 board.

5
Controlling IoT Devices over

the Internet
Internet of Things (IoT) is one of the most popular topics in the technological industry. IoT
can be applied in various scenarios, such as monitoring and automation. In this chapter, we
will learn how to implement IoT on an ESP32 board through a Wi-Fi network. Here, we
will begin to connect to an existing Wi-Fi and then make our own smart home application
over Wi-Fi.

We will cover the following topics in this book:

Connecting to an internet network via ESP32
Accessing data from a web server
Building a web server inside ESP32
Making a smart home application

Technical requirements
Before we begin, make sure you have the following things ready:

A computer with an OS installed, such as Windows, Linux, or macOS.
An ESP32 development board. We recommend the ESP-WROVER-KIT v4 board
from Espressif.
A Wi-Fi network with internet access capability.

Controlling IoT Devices over the Internet Chapter 5

[89]

Introducing ESP32 Wi-Fi development
Wi-Fi, or a wireless network, is a communication model that makes it possible to interact
with another system. With these, we can perform common network tasks over network
protocols such as TCP/IP, UDP/IP, HTTP, or SMTP/POP3. Since the ESP32 chip has built-in
Wi-Fi and a Bluetooth module, we connect our ESP32 board to an existing network.

To work with Wi-Fi on ESP32, we need the esp_wifi.h header file to be included in our
project:

#include "esp_wifi.h"

Wi-Fi programming in ESP32 uses an event-based model. We call the Wi-Fi API from the
board driver in order to access the Wi-Fi module on the ESP32 board. The ESP32 Wi-Fi API
supports Wi-Fi security such as WPA, WPA2, and WEP. A list of Wi-Fi API functions can
be found at https:/ /docs. espressif. com/projects/ esp- idf/ en/latest/ api- reference/
network/esp_wifi. html.

In this chapter, we will work with a Wi-Fi network stack in the ESP32 board. For demo
purposes, I have used the ESP-WROVER-KIT v4 board.

Scanning Wi-Fi hotspot
The first demo is used to perform Wi-Fi scanning. We will scan for all existing Wi-Fi
networks in the surrounding area in which we are present. First, we will create the ESP32
project, called wifiscan. Our main program is wifiscan.c.

Next, we load all libraries from header files into our program as follows:

#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/event_groups.h"
#include "esp_system.h"
#include "esp_wifi.h"
#include "esp_event_loop.h"
#include "esp_log.h"
#include "nvs_flash.h"

#include "lwip/err.h"
#include "lwip/sys.h"

https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_wifi.html

Controlling IoT Devices over the Internet Chapter 5

[90]

In the main entry app_main() function, we initialize storage for the Wi-Fi program by
calling the esp_wifi_set_storage() function. We also need a function to listen to
incoming events from the Wi-Fi API. For instance, we create a function
named event_handler() and pass it into the esp_event_loop_init() function.

Next, we run the Wi-Fi service on ESP32 by calling the esp_wifi_start() function:

 esp_err_t ret = nvs_flash_init();
 if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret ==
ESP_ERR_NVS_NEW_VERSION_FOUND) {
 ESP_ERROR_CHECK(nvs_flash_erase());
 ret = nvs_flash_init();
 }
 ESP_ERROR_CHECK(ret);

 tcpip_adapter_init();
 ESP_ERROR_CHECK(esp_event_loop_init(event_handler, NULL));
 wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
 ESP_ERROR_CHECK(esp_wifi_init(&cfg));
 ESP_ERROR_CHECK(esp_wifi_set_storage(WIFI_STORAGE_RAM));
 ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
 ESP_ERROR_CHECK(esp_wifi_start());

After the Wi-Fi service has started, we will perform Wi-Fi scanning using
the esp_wifi_scan_start() function. To do this, we should pass
the wifi_scan_config_t parameter into esp_wifi_scan_start(). For Wi-Fi scanning,
we set NULL for the ssid and bssid parameters.

We perform looping in Wi-Fi scanning. After the Wi-Fi scanning process is done, we again
call esp_wifi_scan_start():

 wifi_scan_config_t scanConf = {
 .ssid = NULL,
 .bssid = NULL,
 .channel = 0,
 .show_hidden = true
 };

 while(true){
 ESP_ERROR_CHECK(esp_wifi_scan_start(&scanConf, true));
 vTaskDelay(3000 / portTICK_PERIOD_MS);
 }

Controlling IoT Devices over the Internet Chapter 5

[91]

Now, we will implement the event_handler() function. Technically, we receive all
events from the Wi-Fi service. You can read about Wi-Fi events in the ESP32 documentation
at https://docs.espressif. com/ projects/ esp- idf/ en/latest/ api- guides/ wifi. html.

In this scenario, we will wait for the SYSTEM_EVENT_SCAN_DONE event. This event is raised
after ESP32 performs the Wi-Fi scanning. To get the result of Wi-Fi scanning, we can call
the esp_wifi_scan_get_ap_num() function.

Then, we will loop our program to retrieve Wi-Fi hotspot information by calling
the esp_wifi_scan_get_ap_records() function. We will then print the Wi-Fi
information into the Terminal as follows:

esp_err_t event_handler(void *ctx, system_event_t *event)
{
 if (event->event_id == SYSTEM_EVENT_SCAN_DONE) {
 uint16_t apCount = 0;
 esp_wifi_scan_get_ap_num(&apCount);
 printf("Wi-Fi found: %d\n",event->event_info.scan_done.number);
 if (apCount == 0) {
 return ESP_OK;
 }
 wifi_ap_record_t *wifi = (wifi_ap_record_t
*)malloc(sizeof(wifi_ap_record_t) * apCount);
 ESP_ERROR_CHECK(esp_wifi_scan_get_ap_records(&apCount, wifi));
....
}

After we have obtained a list of wifi_ap_record_t items, we will set the authentication
name based on the wifi_ap_record_t.authmode type, as follows:

 for (int i=0; i<apCount; i++) {
 char *authmode;
 switch(wifi[i].authmode) {
 case WIFI_AUTH_OPEN:
 authmode = "NO AUTH";
 break;
 case WIFI_AUTH_WEP:
 authmode = "WEP";
 break;
 case WIFI_AUTH_WPA_PSK:
 authmode = "WPA PSK";
 break;
 case WIFI_AUTH_WPA2_PSK:
 authmode = "WPA2 PSK";
 break;
 case WIFI_AUTH_WPA_WPA2_PSK:
 authmode = "WPA/WPA2 PSK";

https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-guides/wifi.html

Controlling IoT Devices over the Internet Chapter 5

[92]

 break;
 default:
 authmode = "Unknown";
 break;
 }

Then, we will print Wi-Fi SSID, RSSI, and authentication mode onto the Terminal:

 printf("SSID: %15.15s RSSI: %4d AUTH: %10.10s\n",wifi[i].ssid,
wifi[i].rssi, authmode);

Now you can save your project. Compile and flash this program into ESP32 board. I
recommend using an 4 MB flash in your ESP32 board via the menuconfig application. Read
Chapter 2, Making Visual Data and Animation on an LCD, and Chapter 3, Building a Simple
Game with an Embedded ESP32 Board, to learn about configuring flash storage.

After a program is flashed on the screen, you can check the results of the Wi-Fi scanning
using serial application. In figure 5-1, you can see that it shows the results of Wi-Fi
scanning on my board:

Figure 5-1: A result of Wi-Fi scanning

Controlling IoT Devices over the Internet Chapter 5

[93]

Connecting to an existing Wi-Fi network
In this section, we will be connecting to an existing Wi-Fi network. You should prepare a
Wi-Fi hotspot for demo purposes. For Wi-Fi security, we will use WPA/WPA2 on an
existing Wi-Fi network. Since we are using WPA/WPA2 authentication mode, we need the
SSID name and SSID key from your Wi-Fi hotspot in order to join this Wi-Fi network.

We can now start to create a project called wificonnect. In the main entry,
the app_main() function, we call the connect_to_wifi() function.
The connect_to_wifi() function is the function that connects to existing Wi-Fi networks:

void app_main()
{
 //Initialize NVS
 esp_err_t ret = nvs_flash_init();
 if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret ==
ESP_ERR_NVS_NEW_VERSION_FOUND) {
 ESP_ERROR_CHECK(nvs_flash_erase());
 ret = nvs_flash_init();
 }
 ESP_ERROR_CHECK(ret);
 connect_to_wifi();
}

Technically, we initialize the Wi-Fi service in the connect_to_wifi() function. Since we
want to connect to existing Wi-Fi, we should pass SSID and SSID KEY into
the wifi_config_t parameter in the esp_wifi_set_config() function.

We will also pass the event_handler() function into the esp_event_loop_init()
function to listen to all the events from a Wi-Fi service. We set our Wi-Fi service mode as
WIFI_MODE_STA for the Wi-Fi station using the esp_wifi_set_mode() function. We will
then start the Wi-Fi service by calling the esp_wifi_start() function.

We will then write the following program for the Wi-Fi service:

void connect_to_wifi()
{
 s_wifi_event_group = xEventGroupCreate();

 tcpip_adapter_init();
 ESP_ERROR_CHECK(esp_event_loop_init(event_handler, NULL));

 wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
 ESP_ERROR_CHECK(esp_wifi_init(&cfg));
 wifi_config_t wifi_config = {

Controlling IoT Devices over the Internet Chapter 5

[94]

 .sta = {
 .ssid = "SSID",
 .password = "SSID_KEY"
 },
 };

 ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
 ESP_ERROR_CHECK(esp_wifi_set_config(ESP_IF_WIFI_STA, &wifi_config));
 ESP_ERROR_CHECK(esp_wifi_start());

 ESP_LOGI(TAG, "wifi_init_sta finished.");
}

In the event_handler() function, we listen to three events: SYSTEM_EVENT_STA_START,
SYSTEM_EVENT_STA_GOT_IP, and SYSTEM_EVENT_STA_DISCONNECTED. When we receive
the SYSTEM_EVENT_STA_START event, we can call esp_wifi_connect() to connect to an
existing Wi-Fi network.

We will get the SYSTEM_EVENT_STA_GOT_IP event if our ESP32 board gets an IP address
from a Wi-Fi network. In this event, we print out our IP address for the ESP32 board:

static esp_err_t event_handler(void *ctx, system_event_t *event)
{
 switch(event->event_id) {
 case SYSTEM_EVENT_STA_START:
 esp_wifi_connect();
 break;
 case SYSTEM_EVENT_STA_GOT_IP:
 ESP_LOGI(TAG, "got ip:%s",
 ip4addr_ntoa(&event->event_info.got_ip.ip_info.ip));
 s_retry_num = 0;
 xEventGroupSetBits(s_wifi_event_group, WIFI_CONNECTED_BIT);
 break;

The SYSTEM_EVENT_STA_DISCONNECTED event is used to detect whether or not our ESP32
board fails or disconnects from the Wi-Fi network. We call
the esp_wifi_connect() function again to connect to an existing Wi-Fi network:

 case SYSTEM_EVENT_STA_DISCONNECTED:
 {
 if (s_retry_num < WIFI_ESP_MAXIMUM_RETRY) {
 esp_wifi_connect();
 xEventGroupClearBits(s_wifi_event_group,
WIFI_CONNECTED_BIT);
 s_retry_num++;
 ESP_LOGI(TAG,"retry to connect to the AP");
 }

Controlling IoT Devices over the Internet Chapter 5

[95]

 ESP_LOGI(TAG,"connect to the AP fail\n");
 break;
 }
 default:
 break;
 }
 return ESP_OK;
}

Save this project, and compile and flash the program onto the ESP32 board.

Figure 5-2 shows the program output when the ESP32 board is connected to a Wi-Fi
hotspot:

Figure 5-2: Getting IP address from existing Wi-Fi hotspot

Accessing data from a web server
In the previous section, we learned how to connect an existing Wi-Fi hotspot with an ESP32
board. Now, we will try to access a web server from our ESP32 board. Technically, ESP32
APIs adopt the socket programming model to communicate with other systems over a
network.

Controlling IoT Devices over the Internet Chapter 5

[96]

For demo purposes, we will access a web server. We will use Google as a web server target
here. We can start by creating the ESP32 project called http_request, with
the http_request.c file as the main program. This project can also be found on the
official website of the Espressif IDF project, at https:/ /github. com/ espressif/ esp- idf/
tree/master/examples/ protocols/ http_ server.

First, we will load the libraries in our project, including the network libraries1.
such as socket.h and dns.h:

#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/event_groups.h"
#include "esp_system.h"
#include "esp_wifi.h"
#include "esp_event_loop.h"
#include "esp_log.h"
#include "nvs_flash.h"

#include "lwip/err.h"
#include "lwip/sockets.h"
#include "lwip/sys.h"
#include "lwip/netdb.h"
#include "lwip/dns.h"

We define our web server target as google.com. Since we use a socket2.
programming model with the TCP/IP protocol, we should build our own HTTP
request over the TCP/IP protocol. We will define the HTTP Get request on
the REQUEST variable.
If you want to learn more about HTTP, I recommend reading the HTTP standard3.
protocol in the RFC2616 document. You can read RFC 2616 at https:/ /tools.
ietf.org/ html/ rfc2616:

#define WEB_SERVER "google.com"
#define WEB_PORT 80
#define WEB_URL "http://google.com/"

static const char *REQUEST = "GET " WEB_URL " HTTP/1.0\r\n"
 "Host: "WEB_SERVER"\r\n"
 "User-Agent: esp-idf/1.0 esp32\r\n"
 "\r\n";

https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://github.com/espressif/esp-idf/tree/master/examples/protocols/http_server
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616

Controlling IoT Devices over the Internet Chapter 5

[97]

To work with Wi-Fi on ESP32, we will start the Wi-Fi service on a main entry4.
function called app_main(). We will also define our SSID and SSID key for our
existing Wi-Fi. Change SSID and SSID_KEY from your Wi-Fi network
configuration as follows:

 wifi_config_t wifi_config = {
 .sta = {
 .ssid = "SSID",
 .password = "SSID_KEY",
 },
 };
 ESP_LOGI(TAG, "Setting Wi-Fi configuration SSID %s...",
wifi_config.sta.ssid);
 ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
 ESP_ERROR_CHECK(esp_wifi_set_config(ESP_IF_WIFI_STA, &wifi_config));
 ESP_ERROR_CHECK(esp_wifi_start());

After we have connected to a Wi-Fi network, we will make an HTTP request to5.
the web server. We will declare our socket with SOCK_STREAM for the TCP/IP
protocol:

 const struct addrinfo hints = {
 .ai_family = AF_INET,
 .ai_socktype = SOCK_STREAM,
 };
 struct addrinfo *res;
 struct in_addr *addr;
 int s, r;
 char recv_buf[64];

Next, we will get the IP address from the web server using the getaddrinfo()6.
function. Then, we will connect to the web server using the connect() function
by passing the IP address of the web server target:

 int err = getaddrinfo(WEB_SERVER, "80", &hints, &res);

 if(err != 0 || res == NULL) {
 ESP_LOGE(TAG, "DNS lookup failed err=%d res=%p", err, res);
 vTaskDelay(1000 / portTICK_PERIOD_MS);
 continue;
 }
 addr = &((struct sockaddr_in *)res->ai_addr)->sin_addr;
 ESP_LOGI(TAG, "DNS lookup succeeded. IP=%s", inet_ntoa(*addr));

 s = socket(res->ai_family, res->ai_socktype, 0);
 if(s < 0) {
 ESP_LOGE(TAG, "... Failed to allocate socket.");

Controlling IoT Devices over the Internet Chapter 5

[98]

 freeaddrinfo(res);
 vTaskDelay(1000 / portTICK_PERIOD_MS);
 continue;
 }
 ESP_LOGI(TAG, "... allocated socket");

 if(connect(s, res->ai_addr, res->ai_addrlen) != 0) {
 ESP_LOGE(TAG, "... socket connect failed errno=%d", errno);
 close(s);
 freeaddrinfo(res);
 vTaskDelay(4000 / portTICK_PERIOD_MS);
 continue;
 }

 ESP_LOGI(TAG, "... connected");
 freeaddrinfo(res);

After our ESP32 program is connected to the web server, we will make an HTTP7.
GET request using the write() function by passing the REQUEST parameter that
we defined in previous codes:

 if (write(s, REQUEST, strlen(REQUEST)) < 0) {
 ESP_LOGE(TAG, "... socket send failed");
 close(s);
 vTaskDelay(4000 / portTICK_PERIOD_MS);
 continue;
 }
 ESP_LOGI(TAG, "... socket send success");

Next, we will wait for an incoming response from the web server. We will set8.
timeout for HTTP requests using setsockopt(). To read response messages
from the web server, we can use the read() function. The response message
from an web server is printed in the Terminal:

 struct timeval receiving_timeout;
 receiving_timeout.tv_sec = 5;
 receiving_timeout.tv_usec = 0;
 if (setsockopt(s, SOL_SOCKET, SO_RCVTIMEO, &receiving_timeout,
 sizeof(receiving_timeout)) < 0) {
 ESP_LOGE(TAG, "... failed to set socket receiving timeout");
 close(s);
 vTaskDelay(4000 / portTICK_PERIOD_MS);
 continue;
 }
 ESP_LOGI(TAG, "... set socket receiving timeout success");

 do {

Controlling IoT Devices over the Internet Chapter 5

[99]

 bzero(recv_buf, sizeof(recv_buf));
 r = read(s, recv_buf, sizeof(recv_buf)-1);
 for(int i = 0; i < r; i++) {
 putchar(recv_buf[i]);
 }
 } while(r > 0);

Once we've received all of the messages from the web server, we can close the9.
connection using close():

 close(s);

This program is applied with looping, so the program will connect and send a HTTP
request to the web server continuously within a certain period. We can implement the
looping delay with following code:

 while(1) {
 ...

 for(int countdown = 10; countdown >= 0; countdown--) {
 ESP_LOGI(TAG, "%d... ", countdown);
 vTaskDelay(1000 / portTICK_PERIOD_MS);
 }
 ...
 }

Save our project program, and compile and flash this program to the ESP3210.
board. Then you can use a serial app to see the program output:

Controlling IoT Devices over the Internet Chapter 5

[100]

Figure 5-3: program output for the http_request project

Building your own web server inside ESP32
In this section, we will learn about a more advanced topic to build our own web server. A
web server uses HTTP to serve all requests from clients. In this section, we will serve
simple HTTP requests. We will use an existing sample program from the ESP32 web server
project and implement the following three HTTP request scenarios:

The HTTP GET request with the address /hello
The HTTP POST request with the address /echo
The HTTP PUT request with the address /ctrl

We will implement these requests in our web server.

Controlling IoT Devices over the Internet Chapter 5

[101]

Building HTTP requests
We will start our project by creating the ESP32 project, called webserver, with webserver.c
as the main program. You can initialize the Wi-Fi service on the ESP32 that we have
learned. For a web server with ESP32 API information, we can read the official document
at https://docs.espressif. com/ projects/ esp- idf/ en/latest/ api- reference/
protocols/esp_http_ server. html.

To build a HTTP request, we will use the httpd_uri_t struct. We can declare the uri_get
variable as the httpd_uri_t struct as follows:

httpd_uri_t uri_get = {
 .uri = "/uri",
 .method = HTTP_GET,
 .handler = get_handler,
 .user_ctx = NULL
};

httpd_uri_t.method can be HTTP_GET, HTTP_POST, and HTTP_PUT. We pass our
function on httpd_uri_t.handler to process a HTTP request:

First, we will implement the /hello request. We will declare our HTTP GET1.
request with the httpd_uri_t struct. Then, we will implement the HTTP GET
handler function and create the hello_get_handler() function. We will then
send the "Hello World!" message response to the client as follows:

httpd_uri_t hello = {
 .uri = "/hello",
 .method = HTTP_GET,
 .handler = hello_get_handler,
 /* Let's pass response string in user
 * context to demonstrate it's usage */
 .user_ctx = "Hello World!"
};
/* An HTTP GET handler */
esp_err_t hello_get_handler(httpd_req_t *req)
{
 char* buf;
 size_t buf_len;

 /* Get header value string length and allocate memory for length + 1,
 * extra byte for null termination */
 buf_len = httpd_req_get_hdr_value_len(req, "Host") + 1;
 if (buf_len > 1) {
 buf = malloc(buf_len);
 /* Copy null terminated value string into buffer */

https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/protocols/esp_http_server.html

Controlling IoT Devices over the Internet Chapter 5

[102]

 if (httpd_req_get_hdr_value_str(req, "Host", buf, buf_len) ==
ESP_OK) {
 ESP_LOGI(TAG, "Found header => Host: %s", buf);
 }
 free(buf);
 }

 buf_len = httpd_req_get_hdr_value_len(req, "Test-Header-2") + 1;
 if (buf_len > 1) {
 buf = malloc(buf_len);
 if (httpd_req_get_hdr_value_str(req, "Test-Header-2", buf, buf_len)
== ESP_OK) {
 ESP_LOGI(TAG, "Found header => Test-Header-2: %s", buf);
 }
 free(buf);
 }

 buf_len = httpd_req_get_hdr_value_len(req, "Test-Header-1") + 1;
 if (buf_len > 1) {
 buf = malloc(buf_len);
 if (httpd_req_get_hdr_value_str(req, "Test-Header-1", buf, buf_len)
== ESP_OK) {
 ESP_LOGI(TAG, "Found header => Test-Header-1: %s", buf);
 }
 free(buf);
 }

Read URL query string length and allocate memory for length + 1; extra byte for null
termination.

 buf_len = httpd_req_get_url_query_len(req) + 1;
 if (buf_len > 1) {
 buf = malloc(buf_len);
 if (httpd_req_get_url_query_str(req, buf, buf_len) == ESP_OK) {
 ESP_LOGI(TAG, "Found URL query => %s", buf);
 char param[32];
 /* Get value of expected key from query string */
 if (httpd_query_key_value(buf, "query1", param, sizeof(param)) == ESP_OK)
{
 ESP_LOGI(TAG, "Found URL query parameter => query1=%s", param);
 }
 if (httpd_query_key_value(buf, "query3", param, sizeof(param)) == ESP_OK)
{
 ESP_LOGI(TAG, "Found URL query parameter => query3=%s", param);
 }
 if (httpd_query_key_value(buf, "query2", param, sizeof(param)) == ESP_OK)
{
 ESP_LOGI(TAG, "Found URL query parameter => query2=%s", param);

Controlling IoT Devices over the Internet Chapter 5

[103]

 }
 }
 free(buf);
 }

 /* Set some custom headers */

 Set some custom headers to the code:

 httpd_resp_set_hdr(req, "Custom-Header-1", "Custom-Value-1");
 httpd_resp_set_hdr(req, "Custom-Header-2", "Custom-Value-2");

 /* Send response with custom headers and body set as the
 * string passed in user context*/
 const char* resp_str = (const char*) req->user_ctx;
 httpd_resp_send(req, resp_str, strlen(resp_str));

 /* After sending the HTTP response the old HTTP request
 * headers are lost. Check if HTTP request headers can be read now. */
 if (httpd_req_get_hdr_value_len(req, "Host") == 0) {
 ESP_LOGI(TAG, "Request headers lost");
 }
 return ESP_OK;
}

2. The second request is the /echo request. We declare our HTTP POST request
with the httpd_uri_t struct. Then, we implement the HTTP POST handler
function and create the echo_post_header() function. We implement an echo
program. This program sends back content from the client. We can use
the httpd_resp_send_chunk() function to send a content or request to a client:

httpd_uri_t echo = {
 .uri = "/echo",
 .method = HTTP_POST,
 .handler = echo_post_handler,
 .user_ctx = NULL
};
/* An HTTP POST handler */
esp_err_t echo_post_handler(httpd_req_t *req)
{
 char buf[100];
 int ret, remaining = req->content_len;

 while (remaining > 0) {
 /* Read the data for the request */
 if ((ret = httpd_req_recv(req, buf,
 MIN(remaining, sizeof(buf)))) <= 0) {

Controlling IoT Devices over the Internet Chapter 5

[104]

 if (ret == HTTPD_SOCK_ERR_TIMEOUT) {
 /* Retry receiving if timeout occurred */
 continue;
 }
 return ESP_FAIL;
 }
 /* Send back the same data */
 httpd_resp_send_chunk(req, buf, ret);
 remaining -= ret;
 /* Log data received */
 ESP_LOGI(TAG, "=========== RECEIVED DATA ==========");
 ESP_LOGI(TAG, "%.*s", ret, buf);
 ESP_LOGI(TAG, "====================================");
 }
 // End response
 httpd_resp_send_chunk(req, NULL, 0);
 return ESP_OK;
}

The last request is the /ctrl request. This request implements HTTP PUT. Our3.
aim is to register and unregister based on user input. When the user sends 1, we
register the /hello and /echo HTTP requests. If not, we unregister all requests
when we receive a value of 0:

httpd_uri_t ctrl = {
 .uri = "/ctrl",
 .method = HTTP_PUT,
 .handler = ctrl_put_handler,
 .user_ctx = NULL
};

/* An HTTP PUT handler. This demonstrates realtime
 * registration and deregistration of URI handlers
 */
esp_err_t ctrl_put_handler(httpd_req_t *req)
{
 char buf;
 int ret;

 if ((ret = httpd_req_recv(req, &buf, 1)) <= 0) {
 if (ret == HTTPD_SOCK_ERR_TIMEOUT) {
 httpd_resp_send_408(req);
 }
 return ESP_FAIL;
 }

 if (buf == '0') {

Controlling IoT Devices over the Internet Chapter 5

[105]

 /* Handler can be unregistered using the uri string */
 ESP_LOGI(TAG, "Unregistering /hello and /echo URIs");
 httpd_unregister_uri(req->handle, "/hello");
 httpd_unregister_uri(req->handle, "/echo");
 }
 else {
 ESP_LOGI(TAG, "Registering /hello and /echo URIs");
 httpd_register_uri_handler(req->handle, &hello);
 httpd_register_uri_handler(req->handle, &echo);
 }

 /* Respond with empty body */
 httpd_resp_send(req, NULL, 0);
 return ESP_OK;
}

Next, we will write our web server.

Building a web server
In this section, we will activate our web server on the ESP32 board. When we receive
a SYSTEM_EVENT_STA_GOT_IP event from Wi-Fi service, we start a web server by calling
the start_webserver() function.

We will call the stop_webserver() function when the ESP32 board is1.
disconnected on a SYSTEM_EVENT_STA_DISCONNECTED event:

static esp_err_t event_handler(void *ctx, system_event_t *event)
{
 httpd_handle_t *server = (httpd_handle_t *) ctx;

 switch(event->event_id) {
 case SYSTEM_EVENT_STA_START:
 ESP_LOGI(TAG, "SYSTEM_EVENT_STA_START");
 ESP_ERROR_CHECK(esp_wifi_connect());
 break;
 case SYSTEM_EVENT_STA_GOT_IP:
 ESP_LOGI(TAG, "SYSTEM_EVENT_STA_GOT_IP");
 ESP_LOGI(TAG, "Got IP: '%s'",
 ip4addr_ntoa(&event->event_info.got_ip.ip_info.ip));

 /* Start the web server */
 if (*server == NULL) {
 *server = start_webserver();
 }
 break;

Controlling IoT Devices over the Internet Chapter 5

[106]

 case SYSTEM_EVENT_STA_DISCONNECTED:
 ESP_LOGI(TAG, "SYSTEM_EVENT_STA_DISCONNECTED");
 ESP_ERROR_CHECK(esp_wifi_connect());

 /* Stop the web server */
 if (*server) {
 stop_webserver(*server);
 *server = NULL;
 }
 break;
 default:
 break;
 }
 return ESP_OK;
}

Now, we will implement the start_webserver() function. We will first use2.
httpd_start() to start our web server. Then, we will register all HTTP requests
using the httpd_register_uri_handler() function:

httpd_handle_t start_webserver(void)
{
 httpd_handle_t server = NULL;
 httpd_config_t config = HTTPD_DEFAULT_CONFIG();

 // Start the httpd server
 ESP_LOGI(TAG, "Starting server on port: '%d'", config.server_port);
 if (httpd_start(&server, &config) == ESP_OK) {
 // Set URI handlers
 ESP_LOGI(TAG, "Registering URI handlers");
 httpd_register_uri_handler(server, &hello);
 httpd_register_uri_handler(server, &echo);
 httpd_register_uri_handler(server, &ctrl);
 return server;
 }

 ESP_LOGI(TAG, "Error starting server!");
 return NULL;
}

Controlling IoT Devices over the Internet Chapter 5

[107]

To stop the web server service from working, we will implement3.
the stop_webserver() function. We will also call the httpd_stop() function
to stop our web server service in ESP32:

void stop_webserver(httpd_handle_t server)
{
 // Stop the httpd server
 httpd_stop(server);
}

Save all the programs. 4.

Testing the program
Now you can compile and upload our project program into the ESP32 board. Open your
serial app in order to see your IP Address. Figure 5-4 shows that our program has started.
You should see your IP Address in the ESP32 board:

Figure 5-4: IP Address from the web server on the ESP32 board

Now you can use a browser for testing. Open the http://<ip address of
ESP32>/hello URL. If this is successful, you will see the response message "Hello
World!", as shown in Figure 5-5:

Controlling IoT Devices over the Internet Chapter 5

[108]

Figure 5-5: A response output from ESP32 in the browser

To simulate a HTTP POST request, you can use the Postman program. You can download
this at https://www. getpostman. com/ .

Another option for the HTTP tools is to write a program to perform an HTTP POST request
when we use the Postman tool. The Postman tool can be used to send a HTTP request with
the GET, POST, DEL, and PUT modes. You can select POST with the http://<ip address
of ESP32>/echo target URL:

Content-Type: application/x-www-form-urlencoded

We set the request body as a hello world message. You can see the HTTP POST request
on Postman in figure 5-6:

Figure 5-6: Performing HTTP POST request using Postman

https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/

Controlling IoT Devices over the Internet Chapter 5

[109]

Click the Send button to execute the HTTP POST request. You should get a response from
ESP32 with the requested message. The request body should have similar content to your
Postman tool. You also can see program output in the ESP32 Terminal, as shown in figure
5-7:

Figure 5-7: Program output on the ESP32 Terminal from our HTTP POST request

For the HTTP PUT request, we can use the same configuration from the HTTP POST request.
We will set PUT on the Postman tool. On the body request, we will then set the value as 1 or
0. If we set it as 1, the ESP32 program will register the /hello and /echo requests.
Otherwise, we will set the value as 0 to unregister all requests. You can see my Postman
configuration in figure 5-8:

Controlling IoT Devices over the Internet Chapter 5

[110]

Figure 5-8: Performing an HTTP PUT request using Postman

Press the Send button to execute the HTTP PUT request. You can see the program output on
the ESP32 Terminal in figure 5-9:

Figure 5-9: Program output on the ESP32 Terminal from our HTTP PUT request

Controlling IoT Devices over the Internet Chapter 5

[111]

Try to change the request body with a value of 0. Then press the Send button in the
Postman tool.

Project - making a smart home
In this project, we will build a simple smart home application. A smart home application is
an application based on technology that enables users to control devices within the house.
This application is connected to some sensors and devices. We can get information about
our home through sensor devices such as cameras, temperature, and electricity usage.
We can also control turning lamps on and off.

In this section, we will build a simple smart home using ESP32. We can see a general design
of smart home with the ESP32 board in the following diagram. We can connect sensor and
actuator devices to the ESP32 board, and we can then control them over the network.

To enable us to control the ESP32 board from outside the house, we should activate a web
server service. We define our commands to ESP32 through the web server, as explained in
the following diagram:

Figure 5-10: A simple model of a smart home application

Controlling IoT Devices over the Internet Chapter 5

[112]

For a simple demo, we use an LED in an ESP32 board. We will turn this LED on/off via
HTTP requests. We will define the /led HTTP request to turn the LED on and off. If a
program receives a value of 1 in a request body, we turn on the LED; otherwise, we, turn
off the LED when the program receives a value of 0.

Next, we will implement our project.

Hardware wiring
Hardware wiring does not require much effort; we only need one LED that is connected to
IO12 pin of the ESP32 board. You can change the IO12 pin if your ESP32 board does not
expose this GPIO pin.

Handling HTTP requests
Now we will develop a program for our smart home project:

Create a project called smarthome. Our main program is the smarthome.c file.1.

First, we will declare our libraries for this project:

#include <esp_wifi.h>
#include <esp_event_loop.h>
#include <esp_log.h>
#include <esp_system.h>
#include <nvs_flash.h>
#include <sys/param.h>

#include <esp_http_server.h>

We will then define our logger title and GPIO for our LED:2.

static const char *TAG="APP";
#define LED1 12

Controlling IoT Devices over the Internet Chapter 5

[113]

Next, we will develop a HTTP POST request handler via the httpd_uri_t struct.3.
We define the /led request with HTTP_POST for the request method. In addition,
we pass the led_post_handle() function into the request handler as follows:

httpd_uri_t led_post = {
 .uri = "/led",
 .method = HTTP_POST,
 .handler = led_post_handler,
 .user_ctx = NULL
};

Now we implement our led_post_handler() function. This function reads the4.
HTTP request message. Then, check whether the request body has a value of 1 or
0 in the HTTP request body. If the request body consists of value 1, we turn on
the LED by calling the gpio_set_level() function:

esp_err_t led_post_handler(httpd_req_t *req)
{
 char buf[100];
 int ret, remaining = req->content_len;

 while (remaining > 0) {
 buf[0] = '\0';
 if ((ret = httpd_req_recv(req, &buf, 1)) <= 0) {
 if (ret == HTTPD_SOCK_ERR_TIMEOUT) {
 httpd_resp_send_408(req);
 }
 return ESP_FAIL;
 }
 buf[ret] = '\0';
 ESP_LOGI(TAG, "Recv HTTP => %s", buf);
 if (buf[0] == '1') {
 ESP_LOGI(TAG, "====================================");
 ESP_LOGI(TAG, ">>> Turn on LED");
 gpio_set_level(LED1, 1);
 httpd_resp_send_chunk(req, "Turn on LED", ret);
 }
 else
 if (buf[0] == '0') {
 ESP_LOGI(TAG, "====================================");
 ESP_LOGI(TAG, ">>> Turn off LED");
 gpio_set_level(LED1, 0);
 httpd_resp_send_chunk(req, "Turn off LED", ret);
 }
 else {
 ESP_LOGI(TAG, "====================================");
 ESP_LOGI(TAG, ">>> Unknow command");

Controlling IoT Devices over the Internet Chapter 5

[114]

 httpd_resp_send_chunk(req, "Unknow command", ret);
 }
 remaining -= ret;
 }

 // End response
 httpd_resp_send_chunk(req, NULL, 0);
 return ESP_OK;
}

Next, we will develop a web server in the ESP32 board.5.

Writing a web server program
In this section, we will implement the web server that we learned about in the previous
section in this chapter:

We will call the initialize_gpio() and initialize_wifi() functions to1.
initialize GPIO and Wi-Fi as follows:

void app_main()
{
 static httpd_handle_t server = NULL;
 ESP_ERROR_CHECK(nvs_flash_init());
 initialize_gpio();
 initialize_wifi(&server);
}

We will set GPIO to output mode on the initialize_gpio() function, as2.
follows:

static void initialize_gpio(){
 // set gpio and its direction
 gpio_pad_select_gpio(LED1);
 gpio_set_direction(LED1, GPIO_MODE_OUTPUT);
}

Controlling IoT Devices over the Internet Chapter 5

[115]

In the initialize_wifi() function, we will initialize our Wi-Fi service. You3.
should set SSID and SSID_KEY in order to connect to an existing Wi-Fi network:

static void initialize_wifi(void *arg)
{
 tcpip_adapter_init();
 ESP_ERROR_CHECK(esp_event_loop_init(event_handler, arg));
 wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
 ESP_ERROR_CHECK(esp_wifi_init(&cfg));
 ESP_ERROR_CHECK(esp_wifi_set_storage(WIFI_STORAGE_RAM));
 wifi_config_t wifi_config = {
 .sta = {
 .ssid = "SSID",
 .password = "SSID_KEY",
 },
 };
 ESP_LOGI(TAG, "Setting Wi-Fi configuration SSID %s...",
wifi_config.sta.ssid);
 ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
 ESP_ERROR_CHECK(esp_wifi_set_config(ESP_IF_WIFI_STA, &wifi_config));
 ESP_ERROR_CHECK(esp_wifi_start());
}

We will define the event_handler() function to listen to events from a Wi-Fi4.
service. After we receive an IP Address via the SYSTEM_EVENT_STA_GOT_IP
event, we will run our web server by calling the start_webserver() function.

If we receive a SYSTEM_EVENT_STA_DISCONNECTED event, our program will disconnect
from the Wi-Fi. Next, we should reconnect to the existing Wi-Fi network and stop our web
server by calling the stop_webserver() function:

static esp_err_t event_handler(void *ctx, system_event_t *event)
{
 httpd_handle_t *server = (httpd_handle_t *) ctx;

 switch(event->event_id) {
 case SYSTEM_EVENT_STA_START:
 ESP_LOGI(TAG, "SYSTEM_EVENT_STA_START");
 ESP_ERROR_CHECK(esp_wifi_connect());
 break;
 case SYSTEM_EVENT_STA_GOT_IP:
 ESP_LOGI(TAG, "SYSTEM_EVENT_STA_GOT_IP");
 ESP_LOGI(TAG, "Got IP: '%s'",
 ip4addr_ntoa(&event->event_info.got_ip.ip_info.ip));

 /* Start the web server */
 if (*server == NULL) {

Controlling IoT Devices over the Internet Chapter 5

[116]

 *server = start_webserver();
 }
 break;
 case SYSTEM_EVENT_STA_DISCONNECTED:
 ESP_LOGI(TAG, "SYSTEM_EVENT_STA_DISCONNECTED");
 ESP_ERROR_CHECK(esp_wifi_connect());

 /* Stop the web server */
 if (*server) {
 stop_webserver(*server);
 *server = NULL;
 }
 break;
 default:
 break;
 }
 return ESP_OK;
}

We use the same codes from the webserver project to start and stop our web5.
server. The following is the code implementation for the start_webserver()
and stop_webserver() functions:

httpd_handle_t start_webserver(void)
{
 httpd_handle_t server = NULL;
 httpd_config_t config = HTTPD_DEFAULT_CONFIG();

 // Start the httpd server
 ESP_LOGI(TAG, "Starting server on port: '%d'", config.server_port);
 if (httpd_start(&server, &config) == ESP_OK) {
 // Set URI handlers
 ESP_LOGI(TAG, "Registering URI handlers");
 httpd_register_uri_handler(server, &led_post);
 return server;
 }

 ESP_LOGI(TAG, "Error starting server!");
 return NULL;
}

void stop_webserver(httpd_handle_t server)
{
 // Stop the httpd server
 httpd_stop(server);
}

Save all codes. Next, we can test our program.6.

Controlling IoT Devices over the Internet Chapter 5

[117]

Testing the program
You can compile and upload this project program onto the ESP32 board. Open the serial
tool to navigate to your ESP32. You should see the IP address of the ESP32 board here. If
you don't see it, please reset your board. Figure 5-11 shows the IP address of my ESP32
board:

Figure 5-11: Program output shows the IP Address of the ESP32 board

Controlling IoT Devices over the Internet Chapter 5

[118]

For testing, we will use the Postman tool.

You can set the HTTP POST request with the following header:1.

Content-Type: application/x-www-form-urlencoded

Select the raw option for the request body in the Postman tool. Then, give a value2.
of 1 to the body content, as shown in figure 5-12:

Figure 5-12: Sending HTTP requests using the Postman tool

Controlling IoT Devices over the Internet Chapter 5

[119]

Click the Send button to execute the HTTP POST request. You can see the ESP323.
program output on the serial application, as shown in figure 5-13. Your LED
should light up after receiving a value of 1 from the Postman tool:

Figure 5-13: ESP32 program output when turning on the LED

Controlling IoT Devices over the Internet Chapter 5

[120]

Now you can change the value request, so instead of 1, we input a value of 0 in4.
the Postman tool (see step 2). After doing this, click Send. You should see that
your LED turns off at this point. Figure 5-14 shows the program output from
ESP32:

Figure 5-14: ESP32 program output when turning off the LED

Controlling IoT Devices over the Internet Chapter 5

[121]

Finally, you can send any message, except the 1 and 0 values, via the Postman5.
tool. You should see that the ESP32 program shows an unknown command
message, as shown in figure 5-15:

Figure 5-15: ESP32 program output when HTTP requests are not 1 or 0

This is the end of the chapter. You can practice further by adding command requests with
some sensor and actuator devices.

Controlling IoT Devices over the Internet Chapter 5

[122]

Summary
First, we learned how to work with Wi-Fi on the ESP32 board. Then, our ESP32 board was
connected to the internet and was accessed over a web server. We also made a simple web
server on the ESP32 board. Finally, we built a simple smart home app by controlling an
LED over a network.

Next, we will build a weather station system based on IoT with the ESP32 board.

6
Building an IoT Weather Station

In this chapter, we will continue to develop our understanding of how to build an Internet
of Things (IoT)-based weather monitoring system, which we looked at in Chapter 2,
Making Visual Data and Animation on an LCD. We will learn more practices to develop a
weather monitoring system by adding internet connectivity capabilities. Furthermore, we
will also learn how to handle requests from clients who are trying to access the service.

In this chapter, we will explore the following topics:

Introducing a weather station
Building an IoT weather station
Handling large data requests for weather monitoring systems

Technical requirements
Before we begin, make sure you have the following things ready:

A computer with an OS such as Windows, Linux, or macOS installed
An ESP32 development board; the ESP-WROVER-KIT v4 board from Espressif is
recommended
A DHT22 module
A Wi-Fi network with internet access capability

Building an IoT Weather Station Chapter 6

[124]

Introducing a weather station
In Chapter 2, Making Visual Data and Animation on an LCD, we learned what a weather
monitoring system is. To build a weather station, we require an understanding of weather
monitoring systems. We will focus on building a weather station in this chapter. A weather
station has more features than a weather monitoring system; we can send a result of the
measurement to the backend server on a weather station. In general, we can describe a
simple model of a weather station-based IoT as shown in Figure 6.1. A weather station
consists of the following modules:

An MCU is used to process all computations.
Environmental sensors are sensor devices used to convert physical objects into
digital form. In the context of weather stations, environmental sensors can be
temperature, humidity, wind speed, and direction.
A network module is used to transfer sensor data to a server or a gateway. Data
is then distributed to other systems.

The following figure shows a simple model of a weather station:

Figure 6.1: A simple model of a weather station

In this chapter, we explore how to develop a simple weather station with the ESP32 board.
For this, we use the DHT module as an environmental sensor. We will use cloud-based
technology in this model.

Building an IoT Weather Station Chapter 6

[125]

Working with DHT sensors
To build a weather station, we need environmental sensors. In Chapter 2, Making Visual
Data and Animation on an LCD, we learned how to retrieve temperature and humidity from
a DHT22 module, and displayed this in the LCD.

To work with DHT22, we declare a DHT module type and its GPIO pin on ESP32:

#include <dht.h>
static const dht_sensor_type_t sensor_type = DHT_TYPE_DHT22;
static const gpio_num_t dht_gpio = 26;

We can obtain the temperature and humidity from DHT22, and we can call
the dht_read_data() function by passing temperature and humidity variables, as
follows:

int16_t temperature = 0;
int16_t humidity = 0;

dht_read_data(sensor_type, dht_gpio, &humidity, &temperature);

Next, we will implement a weather station with ESP32.

Building an IoT weather station
In this section, we will build an IoT weather station with an ESP32 board and a DHT22
module. We build a web server inside ESP32 and create a /weather HTTP request to serve
temperature and humidity. The scenario for our project is as follows:

The user can access a weather station via a browser application request to
http://<esp32_server>/weather.
The ESP32 program serves a /weather request.
The ESP32 program reads the temperature and humidity from the DHT22
module.
The ESP32 program sends a response by sending HTML with the temperature
and humidity data.

Building an IoT Weather Station Chapter 6

[126]

You can see our simple architecture in the following figure:

Figure 6.2: Implementing the weather station with ESP32

We will test our weather system using a browser. We need an existing Wi-Fi network to
enable the ESP32 board and serve weather information.

So, let's start.

Hardware wiring
We use the same hardware wiring that we used in Chapter 2, Making Visual Data and
Animation on an LCD, for a weather project. Our DHT22 module is connected to IO26 from
the ESP32 board.

Writing the program
We start by creating a project called weatherweb to implement our program. Our main
program file is weatherweb.c inside the main folder, which we will use to write this
program on the weatherweb.c file:

Initialize all the required headers, as follows:1.

#include <esp_wifi.h>
#include <esp_event_loop.h>
#include <esp_log.h>
#include <esp_system.h>
#include <nvs_flash.h>

Building an IoT Weather Station Chapter 6

[127]

#include <sys/param.h>
#include <esp_http_server.h>

Define the DHT module as DHT22 and GPIO for the DHT module on the 26 pin:2.

#include <dht.h>
static const dht_sensor_type_t sensor_type = DHT_TYPE_DHT22;
static const gpio_num_t dht_gpio = 26;

Prepare our HTML response on the WEATHER_TXT variable:3.

static const char *TAG="APP";
static const char *WEATHER_TXT =
"<html>"
"<head><title>%s</title></head>"
"<body>"
"<p>Temperature: %d </p>"
"<p>Humidity: %d %%</p>"
"</body>"
"</html>";

You can see that the WEATHER_TXT variable consists of %s and %d. These parameters
will be inserted along with a header title for the parameters listed in the preceding
code. This includes the temperature, response, and humidity from our ESP32 program.

Now let's define the entry main program on the app_main() function. Define a4.
web server variable called http_handle_t, and then initialize the Wi-Fi service
by calling initialize_wifi() with a passing server variable:

void app_main()
{
 static httpd_handle_t server = NULL;
 ESP_ERROR_CHECK(nvs_flash_init());
 initialize_wifi(&server);
}

Implement the initialize_wifi() function to connect to an existing Wi-Fi and5.
start a Wi-Fi service. You should change SSID and SSID_KEY for your existing
Wi-Fi. Pass the event_handle() function to the esp_event_loop_init()
function to listen to events from the Wi-Fi service:

static void initialize_wifi(void *arg)
{
 tcpip_adapter_init();
 ESP_ERROR_CHECK(esp_event_loop_init(event_handler, arg));
 wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
 ESP_ERROR_CHECK(esp_wifi_init(&cfg));

Building an IoT Weather Station Chapter 6

[128]

 ESP_ERROR_CHECK(esp_wifi_set_storage(WIFI_STORAGE_RAM));
 wifi_config_t wifi_config = {
 .sta = {
 .ssid = "SSID",
 .password = "SSID_KEY",
 },
 };

We set the ESP32 Wi-Fi mode as WIFI_MODE_STA using esp_wifi_mode(). All Wi-Fi
configs are passed to the esp_wifi_set_config() function to be executed by the ESP32
Wi-Fi service. To start the Wi-Fi service, we call the esp_wifi_start() function:

 ESP_LOGI(TAG, "Setting Wi-Fi configuration SSID %s...",
wifi_config.sta.ssid);
 ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
 ESP_ERROR_CHECK(esp_wifi_set_config(ESP_IF_WIFI_STA, &wifi_config));
 ESP_ERROR_CHECK(esp_wifi_start());
}

In the event_handler() function, we listen to the following
events: SYSTEM_EVENT_STA_START, SYSTEM_EVENT_STA_GOT_IP,
and SYSTEM_EVENT_STA_DISCONNECTED. Then, we will perform the following steps to
handle the incoming events:

Connect to the existing Wi-Fi by calling esp_wifi_connect() when we receive1.
the SYSTEM_EVENT_STA_START event:

static esp_err_t event_handler(void *ctx, system_event_t *event)
{
 httpd_handle_t *server = (httpd_handle_t *) ctx;

 switch(event->event_id) {
 case SYSTEM_EVENT_STA_START:
 ESP_LOGI(TAG, "SYSTEM_EVENT_STA_START");
 ESP_ERROR_CHECK(esp_wifi_connect());
 break;

Start the web server by calling start_webserver() when we receive2.
the SYSTEM_EVENT_STA_GOT_IP event:

 case SYSTEM_EVENT_STA_GOT_IP:
 ESP_LOGI(TAG, "SYSTEM_EVENT_STA_GOT_IP");
 ESP_LOGI(TAG, "Got IP: '%s'",
 ip4addr_ntoa(&event->event_info.got_ip.ip_info.ip));

 /* Start the web server */
 if (*server == NULL) {

Building an IoT Weather Station Chapter 6

[129]

 *server = start_webserver();
 }
 break;

Stop a web server by calling stop_webserver() when we receive3.
the SYSTEM_EVENT_STA_DISCONNECTED event.
Reconnect to the existing Wi-Fi by calling the esp_wifi_connect() function:4.

case SYSTEM_EVENT_STA_DISCONNECTED:
 ESP_LOGI(TAG, "SYSTEM_EVENT_STA_DISCONNECTED");
 ESP_ERROR_CHECK(esp_wifi_connect());

 /* Stop the web server */
 if (*server) {
 stop_webserver(*server);
 *server = NULL;
 }
 break;

Next, implement the start_webserver() and stop_webserver() functions.5.
On starting a web server, register our /weather HTTP request using
the httpd_register_uri_handler() function by passing the weather
variable. When our program receives the /weather HTTP request, we will call
our function in the weather variable. We can stop our web server by calling
httpd_stop():

httpd_handle_t start_webserver(void)
{
 httpd_handle_t server = NULL;
 httpd_config_t config = HTTPD_DEFAULT_CONFIG();

 // Start the httpd server
 ESP_LOGI(TAG, "Starting server on port: '%d'", config.server_port);
 if (httpd_start(&server, &config) == ESP_OK) {
 // Set URI handlers
 ESP_LOGI(TAG, "Registering URI handlers");
 httpd_register_uri_handler(server, &weather);
 return server;
 }

 ESP_LOGI(TAG, "Error starting server!");
 return NULL;
}

Building an IoT Weather Station Chapter 6

[130]

The stop_webserver() function is used to stop the web server service. To stop6.
our web server, we can call httpd_stop():

void stop_webserver(httpd_handle_t server)
{
 // Stop the httpd server
 httpd_stop(server);
}

Define a weather variable with httpd_uri_t. Then, declare our /weather7.
HTTP request on uri. After doing this, we pass the weather_get_handler()
function to the handler, as follows:

httpd_uri_t weather = {
 .uri = "/weather",
 .method = HTTP_GET,
 .handler = weather_get_handler,
 .user_ctx = "ESP32 Weather System"
};

Implement the weather_get_handler() function to read the temperature and8.
humidity from the DHT22 module using the dht_read_data() function:

esp_err_t weather_get_handler(httpd_req_t *req)
{
 ESP_LOGI(TAG, "Request headers lost");
 int16_t temperature = 0;
 int16_t humidity = 0;
 char tmp_buff[256];

 if (dht_read_data(sensor_type, dht_gpio, &humidity, &temperature) ==
ESP_OK)
 {
 sprintf(tmp_buff, WEATHER_TXT, (const char*) req->user_ctx,
temperature/10, humidity/10);
 }

Then, send a response message with the httpd_resp_send() function, as9.
follows:

 httpd_resp_send(req, tmp_buff, strlen(tmp_buff));

 if (httpd_req_get_hdr_value_len(req, "Host") == 0) {
 ESP_LOGI(TAG, "Request headers lost");
 }

After saving all the code, let's test our program.

Building an IoT Weather Station Chapter 6

[131]

Testing the program
We've just written our program, weatherweb, so it's time to compile and upload it to the
ESP32 board; you can type this command:

$ make flash

Now we can test our program. To do this, open a serial software, such as CoolTerm, to
connect to the ESP32 board. You should see that your ESP32 board gets an IP address from
the Wi-Fi hotspot, as shown in the following figure:

Figure 6.3: The ESP32 program output on the serial Terminal

For instance, if the IP address for the ESP32 board is 192.168.1.16, you can open a
browser and navigate to http://192.168.1.16/weather. You should get the
temperature and humidity data from the ESP32 board; Figure 6.4 shows a sample output:

Figure 6.4: A browser feeding sensor data from ESP32

Building an IoT Weather Station Chapter 6

[132]

We've now set up a basic program that provides us with temperature and humidity data
when queried. Next, we are going to make our program perform an auto-refresh with the
weather application.

The auto-refresh weather application
We will now set up a weatherweb project. Here, we will receive information about
temperature and humidity via a browser. If you want to get the latest information from the
ESP32 board, you will have to open a new request to the ESP32 board manually. Let's now
automate this activity, as follows:

To perform an auto-refresh on HTML, use http-equiv="refresh" on the1.
<meta> tag. We can modify our weatherweb project by declaring
the WEATHER_TXT_REF variable:

static const char *WEATHER_TXT_REF =
"<html>"
"<head><title>%s</title>"
"<meta http-equiv=\"refresh\" content=\"5\" >"
"</head>"
"<body>"
"<p>Temperature: %d </p>"
"<p>Humidity: %d %%</p>"
"</body>"
"</html>";

On the weather_get_handler() function, change WEATHER_TXT2.
to WEATHER_TXT_REF on the sprintf() function:

esp_err_t weather_get_handler(httpd_req_t *req)
{
 ESP_LOGI(TAG, "Request headers lost");
 int16_t temperature = 0;
 int16_t humidity = 0;
 char tmp_buff[256];

 if (dht_read_data(sensor_type, dht_gpio, &humidity, &temperature) ==
ESP_OK)
 {
 sprintf(tmp_buff, WEATHER_TXT_REF, (const char*) req->user_ctx,
temperature/10, humidity/10);
 }else{
 tmp_buff[0]='\0';
 }

Building an IoT Weather Station Chapter 6

[133]

Then, we send data to the client by calling the http_resp_send() function:

 httpd_resp_send(req, tmp_buff, strlen(tmp_buff));

 if (httpd_req_get_hdr_value_len(req, "Host") == 0) {
 ESP_LOGI(TAG, "Request headers lost");
 }
 return ESP_OK;
}

Save this code, and then try to compile and upload this program into the ESP323.
board.
Now we can test our program; open a browser and navigate to http://<ip4.
address of ESP32 board>/weather. You should get a web form, as shown in
the preceding section. This browser output will auto-refresh every five seconds.

Now that we've set up the weather station and configured it to give an auto-refreshed
output every five seconds, let's move on to dealing with scalability.

Handling a massive data request for a
weather station
An ESP32 board has limited resources. We can push an ESP32 board to handle massive
requests from clients. To serve large requests from clients, we can use a production web
server. A production web server will make a request from the ESP32 board, and then
broadcast to all the requesters or clients.

We can draw our general design for the ESP32 board to address massive requests in Figure
6.5. We can use Node.js as the web server to serve requests from clients. We also use
Socket.io to broadcast messages to all requesters. Socket.io uses WebSocket
technology to enable us to work with a full-duplex TCP connection on a browser.

Building an IoT Weather Station Chapter 6

[134]

You can learn about Socket.io at https:/ /socket. io/ :

Figure 6.5: Applying the Node.js server as a backend system

In this section, we'll develop a program with Node.js and Socket.io to serve all requests for
the sensor from the ESP32 board. Node.js will visualize the temperature data from the
ESP32 board.

In the next section, we will develop a program for the ESP32 board.

Writing a program for ESP32
We do not need to create a new project; instead, we'll use the existing project: weatherweb:

We add an additional HTTP request. To do this, add an additional /temp HTTP1.
request by passing the temperature_get_handler() handler function. Then,
declare weather_temp for our /temp request:

esp_err_t temperature_get_handler(httpd_req_t *req)
{

}

httpd_uri_t weather_temp = {
 .uri = "/temp",
 .method = HTTP_GET,

https://socket.io/
https://socket.io/
https://socket.io/
https://socket.io/
https://socket.io/
https://socket.io/
https://socket.io/
https://socket.io/

Building an IoT Weather Station Chapter 6

[135]

 .handler = temperature_get_handler,
 .user_ctx = "ESP32 Weather System"
};

In the temperature_get_handler() function, we read the temperature data2.
from the DHT22 module by calling the dht_read_data() function:

 int16_t temperature = 0;
 int16_t humidity = 0;
 char tmp_buff[10];

if (dht_read_data(sensor_type, dht_gpio, &humidity, &temperature) ==
ESP_OK)
 {
 sprintf(tmp_buff, "%d",temperature/10);
 }else{
 tmp_buff[0]='\0';
 }

After doing this, we will send the temperature data to the requester:3.

 httpd_resp_send(req, tmp_buff, strlen(tmp_buff));

 if (httpd_req_get_hdr_value_len(req, "Host") == 0) {
 ESP_LOGI(TAG, "Request headers lost");
 }

We initialize httpd_config_t with the default configuration, as follows:4.

httpd_handle_t start_webserver(void)
{
 httpd_handle_t server = NULL;
 httpd_config_t config = HTTPD_DEFAULT_CONFIG();

Next, we register our /temp request using httpd_register_uri_handler().5.
To do this, we pass the weather_temp variable into
the httpd_register_uri_handler() function:

 // Start the httpd server
 ESP_LOGI(TAG, "Starting server on port: '%d'", config.server_port);
 if (httpd_start(&server, &config) == ESP_OK) {
 // Set URI handlers
 ESP_LOGI(TAG, "Registering URI handlers");
 httpd_register_uri_handler(server, &weather);
 httpd_register_uri_handler(server, &weather_temp);
 return server;
 }

Building an IoT Weather Station Chapter 6

[136]

Finally, we save this program.

Next, we will develop the Node.js application.

Writing a program for Node.js
In this section, we create a Node.js project. You can download and install Node.js at the
following link: https:/ /nodejs. org. Create a folder called weatherfeeder.js to create
our Node.js project. Within this folder, we will create the following files:

App.js: This is the main program from Node.js.
package.json: This is the configuration file for the Node.js project.
weather.html: This is the HTML form to display sensor data.

Figure 6.6 shows our project structure:

Figure 6.6: The project structure for weatherfeeder.js

To visualize sensor data, we can use Flot charts from https:/ /www. flotcharts. org/ . You
can download and extract the Flot project inside our project. Let's begin by writing our
program:

Write scripts for package.json, as follows:1.

{
 "name": "weatherfeeder",
 "description": "Feeding temperature using Node.js, socket.io, and
flot.js",
 "version": "0.0.1",
 "private": true,

https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/

Building an IoT Weather Station Chapter 6

[137]

 "dependencies": {
 "socket.io": "latest"
 }
}

After saving these scripts, you can install all dependency libraries by typing this2.
command in the Terminal. You should have internet access on your computer:

$ npm install

This will install Socket.io into your project.

Next, we write codes on weather.html. This program uses the Flot library3.
(https:/ / www. flotcharts. org/) to visualize sensor data. Socket.io is
responsible for retrieving sensor data from ESP32. We can implement our
Socket.io script in weather.html:

 var socket = io.connect();
 var items = [];
 var counter = 0;

 socket.on('data', function (data) {
 items.push([counter, data]);
 counter = counter + 1;
 if (items.length > 20)
 items.shift();
 $.plot($("#placeholder"), [items]);
 });

Next, develop our main program in the App.js file. Begin by running a web4.
server and handle the HTTP request using http.createServer().
Then, send weather.html if the user requests / from a browser. Socket.io will5.
serve the data requests on data event.
You should change the IP address of the ESP32 board on the esp32_req6.
variable. Socket.io will call the ESP32 web server to retrieve the sensor data:

var http = require('http');
var path = require('path');
var fs = require('fs');

// change this port
var port = process.env.PORT || 80; //8345;
// ESP32 server
var esp32_req = "http://192.168.1.16/temp";

https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/

Building an IoT Weather Station Chapter 6

[138]

We create a server object using createServer() from the HTTP module. We7.
map all paths for JavaScript and CSS files, as follows:

var srv = http.createServer(function (req, res) {

 var filePath = '.' + req.url;
 if (filePath == './')
 filePath = './weather.html';

 var extname = path.extname(filePath);
 var contentType = 'text/html';
 switch (extname) {
 case '.js':
 contentType = 'text/javascript';
 break;
 case '.css':
 contentType = 'text/css';
 break;
 }

We then evaluate to check the requested file. If the requested file is available, we8.
read it and send it to the client. Otherwise, we send an error message on the
HTTP header:

 fs.exists(filePath, function(exists) {
 if (exists) {
 fs.readFile(filePath, function(error, content) {
 if (error) {
 res.writeHead(500);
 res.end();
 } else {
 res.writeHead(200, {
 'Content-Type' : contentType
 });
 res.end(content, 'utf-8');
 }
 });
 } else {
 res.writeHead(404);
 res.end();
 }
 });

Building an IoT Weather Station Chapter 6

[139]

Next, our server listens on a particular port using the listen() function:9.

gw_srv = require('socket.io').listen(srv);
srv.listen(port);
console.log('Server running at http://127.0.0.1:' + port +'/');

We listen to the 'connection' event using sockets.on(). Then, we read the10.
client request, as follows:

gw_srv.sockets.on('connection', function(socket) {
 var dataPusher = setInterval(function () {
 //socket.volatile.emit('data', Math.random() * 100);
 http.get(esp32_req, (resp) => {
 let data = '';

We also listen to the 'data' event to read incoming data, and the 'end' event to11.
reach the end of the client data:

 // A chunk of data has been received.
 resp.on('data', (chunk) => {
 data += chunk;
 });
 // The whole response has been received. Print out the result.
 resp.on('end', () => {
 console.log('Received data: ',data);
 socket.volatile.emit('data', data);
 //console.log(JSON.parse(data).explanation);
 });
 }).on("error", (err) => {
 console.log("Error: " + err.message);
 });

Save the program.12.

Now that we've written our program using Node.js, let's move on to testing it.

Building an IoT Weather Station Chapter 6

[140]

Testing the program
We'll test our program using the following steps:

As explained in the Writing a program for ESP32 section, compile and upload1.
the weatherweb project into the ESP32 board, and then test our /temp request
using a browser.
After doing this, navigate to http://<ip address of ESP32>/temp:2.

Figure 6.7: Accessing temperature data from a browser

You can run the App.js program using the following node command:3.

$ node App.js

This program will run in the background within the OS. You can stop this
program by pressing the Ctrl + C keys.

You can see our Node.js program is running, as shown in Figure 6.8:

Figure 6.8: Running the web server in Node.js

Now open a browser and navigate to the IP address of the Node.js application.4.
You should see the data visualization of the temperature data, as shown in Figure
6.9:

Building an IoT Weather Station Chapter 6

[141]

Figure 6.9: The program output of temperature data in a browser

The browser receives temperature sensor information from the weatherfeeder server.
Figure 6.9 shows a graphical web interface where the x axis represents the data counter, and
the y axis represents the temperature value. According to the figure, the temperature value
equals 22 °C.

You also can see the program output from the Node.js application, weatherfeeder, as
shown in Figure 6.10:

Figure 6.10: The server program output in the Terminal

Building an IoT Weather Station Chapter 6

[142]

You should now be able to see temperature data from the ESP32 board using a Terminal
application, such as CoolTerm.

You can improve this project by adding additional sensor devices and new visualization
models on HTML5 at https:/ /www. flotcharts. org/ . You can try programming samples
from the Flot project.

Summary
In this chapter, we learned how to build a weather station with ESP32 and DHT22. We also
extended our weather station with Node.js in order to serve massive requests.

In the next chapter, we will learn about Wi-Fi wardriving with the ESP32 board.

https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/
https://www.flotcharts.org/

7
Making Your Own Wi-Fi

Wardriving
Wardriving is the act of locating and possibly exploiting connections to wireless networks
while driving around a certain area or region. Wardriving can be used to obtain a list of Wi-
Fi SSIDs in a particular area. In this chapter, we'll learn how to implement Wi-Fi
Wardriving with the ESP32 board. We can use existing Wi-Fi hotspots and maps
in locations that are retrieved from GPS.

We will explore the following topics in this chapter:

An introduction to Wi-Fi Wardriving
Accessing your location via GPS from the ESP32 board
Implementing Wi-Fi Wardriving using ESP32

Technical requirements
Before we begin, make sure you have the following things ready:

A computer with an OS installed such as Windows, Linux, or macOS.
An ESP32 development board. The recommended board here is the ESP-
WROVER-KIT v4 board from Espressif.
A Wi-Fi network with internet access.
A GPS module.

Making Your Own Wi-Fi Wardriving Chapter 7

[144]

Introducing Wi-Fi Wardriving
Wi-Fi Wardriving is the act of performing Wi-Fi hotspot profiling and then mapping
the area to its current location in a certain region. Wi-Fi Wardriving is usually executed by
driving with a vehicle. In this chapter, we will explore how to implement simple Wi-Fi
Wardriving.

We can gather all the SSID names from existing Wi-Fi hotspots. Furthermore, we can store a
result into local storage such as a microSD card. Then we can analyze the data by plotting it
on a map engine such as Google Maps:

Figure 7.1: A simple Wi-Fi Wardriving implementation for ESP32

Making Your Own Wi-Fi Wardriving Chapter 7

[145]

You can see that Wi-Fi hotspots are mapped onto Google Maps in Figure 7.2; these are
simple fake Wi-Fi hotspot positions. You can also use other map engines to render the Wi-
Fi hotspot positions:

Figure 7.2: Mapping a hotspot on Google Maps

Next, we will review the GPS modules for ESP32 boards.

Reviewing the GPS module
There are some GPS modules that we can apply on the ESP32 board. The GPS module
usually uses the UART interface to communicate to the board. UART is a serial
communication model that can send and receive data per byte sequentially. Our board
waits for incoming messages from the GPS module via UART.

Making Your Own Wi-Fi Wardriving Chapter 7

[146]

The following code block is an example of the data output from a GPS module. This data
shows that our GPS module cannot detect our location from the satellite. All GPS data is
defined in NMEA format; further information about NMEA can be found at http:/ /www.
nmea.org/content/ nmea_ standards/ nmea_ 0183_ v_410. asp.

$GPGLL,,,,,,V,N*64
$GPRMC,,V,,,,,,,,,,N*53
$GPVTG,,,,,,,,,N*30
$GPGGA,,,,,,0,00,99.99,,,,,,*48
$GPGSA,A,1,,,,,,,,,,,,,99.99,99.99,99.99*30
$GPGSV,1,1,01,04,,,13*7E
$GPGLL,,,,,,V,N*64
$GPRMC,,V,,,,,,,,,,N*53
$GPVTG,,,,,,,,,N*30

You may not get the position of the data from the GPS module; here is a sample of GPS
data with the GPGGA format:

$GPGGA,215322.000,5003.8239,N,12584.1234,W,1,07,1.6,1581.9,M,-20.7,M,,0000*
5F

For example, we can read the GPS data with the GPGGA format as follows:

Time: 215322.000 is 21:53 and 22.000 seconds in Greenwich Mean Time
(GMT)
Longitude: 5003.8240,N is latitude in degrees.decimal minutes, north
Latitude: 12584.1234,W is longitude in degrees.decimal minutes, west
Number: The number of satellites seen: 07
Altitude: 1,581 meters

http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp
http://www.nmea.org/content/nmea_standards/nmea_0183_v_410.asp

Making Your Own Wi-Fi Wardriving Chapter 7

[147]

For the GPS module, we can use SparkFun. You can find out about SparkFun GPS-RTK2
Board – ZED-F9P (Qwiic) at https:/ /www. sparkfun. com/products/ 15136. Figure 7-3
shows a form of parkFun GPS-RTK2 Board:

Figure 7.3: SparkFun GPS-RTK2 Board – ZED-F9P (Qwiic)

You also can find cheap GPS modules on AliExpress. I recommend using the GPS module
from u-blox's modules. You can see u-blox's modules for GPS at https:/ /www. u-blox. com/
en/positioning-chips- and- modules.

Accessing your location via the GPS module
In this section, we will develop the ESP32 program to access the GPS module. For demo
purposes, we use a GPS module with a UART interface. I have used the u-blox NEO-6M
module. I obtained this module from DX at https:/ /www. dx.com/ p/ gps-module- w-
ceramic-passive- antenna- for- raspberry- pi-arduino- red- 2052944.

Our demo scenario is to read UART data from the u-blox NEO-6M module; and then print
it on a serial Terminal of the ESP32 board.

So, let's start!

https://www.sparkfun.com/products/15136
https://www.sparkfun.com/products/15136
https://www.sparkfun.com/products/15136
https://www.sparkfun.com/products/15136
https://www.sparkfun.com/products/15136
https://www.sparkfun.com/products/15136
https://www.sparkfun.com/products/15136
https://www.sparkfun.com/products/15136
https://www.sparkfun.com/products/15136
https://www.sparkfun.com/products/15136
https://www.sparkfun.com/products/15136
https://www.sparkfun.com/products/15136
https://www.sparkfun.com/products/15136
https://www.sparkfun.com/products/15136
https://www.sparkfun.com/products/15136
https://www.sparkfun.com/products/15136
https://www.u-blox.com/en/positioning-chips-and-modules
https://www.u-blox.com/en/positioning-chips-and-modules
https://www.u-blox.com/en/positioning-chips-and-modules
https://www.u-blox.com/en/positioning-chips-and-modules
https://www.u-blox.com/en/positioning-chips-and-modules
https://www.u-blox.com/en/positioning-chips-and-modules
https://www.u-blox.com/en/positioning-chips-and-modules
https://www.u-blox.com/en/positioning-chips-and-modules
https://www.u-blox.com/en/positioning-chips-and-modules
https://www.u-blox.com/en/positioning-chips-and-modules
https://www.u-blox.com/en/positioning-chips-and-modules
https://www.u-blox.com/en/positioning-chips-and-modules
https://www.u-blox.com/en/positioning-chips-and-modules
https://www.u-blox.com/en/positioning-chips-and-modules
https://www.u-blox.com/en/positioning-chips-and-modules
https://www.u-blox.com/en/positioning-chips-and-modules
https://www.u-blox.com/en/positioning-chips-and-modules
https://www.u-blox.com/en/positioning-chips-and-modules
https://www.u-blox.com/en/positioning-chips-and-modules
https://www.u-blox.com/en/positioning-chips-and-modules
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944
https://www.dx.com/p/gps-module-w-ceramic-passive-antenna-for-raspberry-pi-arduino-red-2052944

Making Your Own Wi-Fi Wardriving Chapter 7

[148]

Hardware wiring
Our ESP32 board is connected to the ESP32 board through the UART interface. The UART
interface has an Rx receiver and a Tx transmitter. Technically, we can map some ESP32
GPIOs to become UART pins. In this demo, we will perform the following wiring:

The GPS Rx pin is connected to ESP32 IOIO 22
The GPS Tx pin is connected to ESP32 IOIO 23
The GPS GND pin is connected to ESP32 GND
The GPS VCC pin is connected to ESP32 3.3V

Other GPS pins are connected to the GND pin from the ESP32 board. We only use Rx and
Tx from the GPS module. You can see my hardware wiring in Figure 7.4:

Figure 7.4: Hardware wiring for the ESP32 board and the GPS module

Writing a program
In this section, we will develop a program to read GPS data via the UART interface. Here,
you can create a new project for ESP32, for instance, gpsdemo. Our main program is the
gpsdemo.c file; we will implement our program in the gpsdemo.c file:

First, we define our header files for the required libraries in the gpsdemo project:1.

#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "esp_log.h"
#include "driver/uart.h"

Making Your Own Wi-Fi Wardriving Chapter 7

[149]

Then, we will define our UART pins for the GPS module. We also set a
buffer size that will be used when reading data from the UART interface:

static const char *TAG = "GPS";

/* Which UART is the GPS module on? */
#define GPS_UART_NUM UART_NUM_1
#define GPS_UART_RX_PIN (22)
#define GPS_UART_TX_PIN (23)
#define GPS_UART_RTS_PIN (21)
#define GPS_UART_CTS_PIN (35)

/* Parameters for the data buffers */
#define UART_SIZE (80)
#define UART_RX_BUF_SIZE (1024)

In the main entry, app_main(), we call our config_gps_uart() function
to initialize our UART interface.

Then, our program will perform looping with while() in order to run2.
continuously:

int app_main(void)
{
 ESP_LOGI(TAG, "Configuring UART");
 config_gps_uart();

 while(true){
 vTaskDelay(3000 / portTICK_PERIOD_MS);
 }

 return 0;
}

Now we implement our function named config_gps_uart(). This function3.
sets our UART pins using the uart_set_pin() API.
Then, we install the UART driver by calling the uart_driver_install()4.
function.
After we have initialized the UART driver, we create a background task using5.
xTaskCreate() by passing the uart_event_task() function:

static void config_gps_uart(void) {
 uart_config_t uart_config = {
 .baud_rate = 9600,
 .data_bits = UART_DATA_8_BITS,
 .parity = UART_PARITY_DISABLE,

Making Your Own Wi-Fi Wardriving Chapter 7

[150]

 .stop_bits = UART_STOP_BITS_1,
 .flow_ctrl = UART_HW_FLOWCTRL_DISABLE
 };
 uart_param_config(GPS_UART_NUM, &uart_config);
 //Set UART pins (using UART0 default pins ie no changes.)
 uart_set_pin(GPS_UART_NUM, GPS_UART_RX_PIN, GPS_UART_TX_PIN,
GPS_UART_RTS_PIN, GPS_UART_CTS_PIN);
 //Install UART driver
 uart_driver_install(GPS_UART_NUM, UART_RX_BUF_SIZE * 2, 0, 0, NULL, 0);
 xTaskCreate(uart_event_task, "uart_event_task", 2048, NULL, 12, NULL);
}

The uart_event_task() function is used to listen to incoming data from
the UART interface.

We implement while() to run our task continuously. Inside while(), we
call the read_line() function to read the UART data ending with '\n':

static void uart_event_task(void *pvParameters)
{
 while (1) {
 char *line = read_line(GPS_UART_NUM);
 ESP_LOGI(TAG, "[UART DATA]: %s", line);

 }
 /* Should never get here */
 vTaskDelete(NULL);
}

Next, we implement the read_line() function. We can read UART data using6.
uart_read_bytes() by passing our buffer characters. We read the UART data
per character.
If we get '\n' from the UART interface, we stop to read the UART data and7.
return to the function caller:

char* read_line(uart_port_t uart_controller) {

 static char line[UART_SIZE];
 char *ptr = line;
 while(1) {
 int num_read = uart_read_bytes(uart_controller, (unsigned char *)ptr,
1, portMAX_DELAY);
 if(num_read == 1) {
 // new line found, terminate the string and return

Making Your Own Wi-Fi Wardriving Chapter 7

[151]

 if(*ptr == '\n') {
 ptr++;
 *ptr = '\0';
 return line;
 }
 // else move to the next char
 ptr++;
 }
 }
}

Then, save all the codes.

Next, we compile and run our project.8.

Running a program
Now you can compile and upload the gpsdemo project to the ESP32 board. To do this, you
can follow these steps:

Open a serial tool such as the CoolTerm tool.1.
Configure CoolTerm to the ESP32 board serial.2.
Then, you can connect your tool to the ESP32 board.3.

Wait a few seconds so that the GPS module can get the current positions from the satellites.
You can see a sample of the program output in Figure 7.5:

Figure 7.5: The program output from the GPS module on the ESP32 serial Terminal

Making Your Own Wi-Fi Wardriving Chapter 7

[152]

Parsing GPS data
We have built the gpsdemo project to read GPS data via the UART interface. We can see
that the GPS module output shows raw data. To obtain the current position of our location
with the GPS module, we should parse our GPS data. There are a number of libraries that
we can use to parse GPS data.

For our project, we can use the minmea library (https:/ /github. com/ kosma/ minmea). You
can download the minmea project and extract it into components for our project. You can
see how to to implement minmea as the ESP32 component in Figure 7.6:

Figure 7.6: The project structure for the gpsdemo project

Now we can modify our gpsdemo project. We do this by adding minmea.h in our main
program file:

// minmea
#include "minmea.h"

https://github.com/kosma/minmea
https://github.com/kosma/minmea
https://github.com/kosma/minmea
https://github.com/kosma/minmea
https://github.com/kosma/minmea
https://github.com/kosma/minmea
https://github.com/kosma/minmea
https://github.com/kosma/minmea
https://github.com/kosma/minmea
https://github.com/kosma/minmea
https://github.com/kosma/minmea

Making Your Own Wi-Fi Wardriving Chapter 7

[153]

We also define latitude, longitude, fix_quality, and satellites_tracked as
variables to hold our current GPS data:

// GPS variables and initial state
float latitude = -1.0;
float longitude = -1.0;
int fix_quality = -1;
int satellites_tracked = -1;

We define the parse_gps_nmea() function to parse GPS data. We can use
the minmea_sentence_id() function from the minmea library to identify the GPS data
type.

If the GPS data type is MINMEA_SENTENCE_RMC, we can extract the GPS position using
the minmea_parse_rmc() function. We will get the minmea_sentence_rmc struct after
calling the minmea_parse_rmc() function; I will identify various data types, as follows:

void parse_gps_nmea(char* line){
 // parse the line
 switch (minmea_sentence_id(line, false)) {
 case MINMEA_SENTENCE_RMC: {
...
 float new_longitude = minmea_tocoord(&frame.longitude);
...
 }

}

Our parse_gps_nmea() function will be called in the uart_event_task() function. We
put this on while(), as shown in the following script:

static void uart_event_task(void *pvParameters)
{
 while (1) {
 char *line = read_line(GPS_UART_NUM);
 parse_gps_nmea(line);

 }
 /* Should never get here */
 vTaskDelete(NULL);
}

Making Your Own Wi-Fi Wardriving Chapter 7

[154]

You can now save the codes, compile, and upload the project into the ESP32 board. Open
the serial tool to see the program output; Figure 7.7 shows my current location via the GPS
module:

Figure 7.7: The program output from the gpsdemo project

Building your own Wi-Fi Wardriving with
ESP32
In this section, we will combine our previous project with building our own Wi-Fi
Wardriving with the ESP32 board – to read GPS data and the SSID name from Wi-Fi
hotspots. To do this, we must read the current position via the GPS module and store it in a
certain variable. Next, we perform Wi-Fi scanning to retrieve the Wi-Fi SSID.

So, let's start!

Hardware wiring
To build your own Wi-Fi Wardriving board we will use the same hardware wiring from the
gpsdemo project in the previous section.

Making Your Own Wi-Fi Wardriving Chapter 7

[155]

Writing a program
To write the program, we use gpsdemo. We add the Wi-Fi API to retrieve the SSID names
on the current environment and then we start to modify the gpsdemo.c file:

First, we add the required header files to access the Wi-Fi hotspots:1.

#include "esp_wifi.h"
#include "esp_system.h"
#include "esp_event.h"
#include "esp_event_loop.h"
#include "nvs_flash.h"

Then we define the config_wifi() function to initialize the Wi-Fi service on the2.
ESP32 board. We activate our Wi-Fi service as WIFI_MODE_STA, and start the Wi-
Fi up by calling esp_wifi_start().
We will also pass the wifi_scan_event_handler() function to listen to Wi-Fi3.
events from the ESP32 Wi-FI service:

static void config_wifi(void) {
 tcpip_adapter_init();
 ESP_ERROR_CHECK(esp_event_loop_init(wifi_scan_event_handler, NULL));
 wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
 ESP_ERROR_CHECK(esp_wifi_init(&cfg));
 ESP_ERROR_CHECK(esp_wifi_set_storage(WIFI_STORAGE_RAM));
 ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
 ESP_ERROR_CHECK(esp_wifi_start());
}

Now we can implement the wifi_scan_event_handler() function to listen to4.
Wi-Fi events from the ESP32 Wi-Fi service.
When we get the SYSTEM_EVENT_SCAN_DONE event, we can retrieve a number of5.
SSIDs by calling the esp_wifi_scan_get_ap_num() function:

esp_err_t wifi_scan_event_handler(void *ctx, system_event_t *event)
{
 if (event->event_id == SYSTEM_EVENT_SCAN_DONE) {
 uint16_t apCount = 0;
 esp_wifi_scan_get_ap_num(&apCount);
 printf("Wi-Fi found: %d\n",event->event_info.scan_done.number);
 if (apCount == 0) {
 return ESP_OK;
 }

Making Your Own Wi-Fi Wardriving Chapter 7

[156]

Then, we get the details of each SSID data using6.
the esp_wifi_scan_get_ap_records() function:

wifi_ap_record_t *wifi = (wifi_ap_record_t
*)malloc(sizeof(wifi_ap_record_t) * apCount);
 ESP_ERROR_CHECK(esp_wifi_scan_get_ap_records(&apCount, wifi));

We map the Wi-Fi authentication model, as follows:7.

 for (int i=0; i<apCount; i++) {
 char *authmode;
 switch(wifi[i].authmode) {
 case WIFI_AUTH_OPEN:
 authmode = "NO AUTH";
 break;
 case WIFI_AUTH_WEP:
 authmode = "WEP";
 break;
 case WIFI_AUTH_WPA_PSK:
 authmode = "WPA PSK";
 break;
 case WIFI_AUTH_WPA2_PSK:
 authmode = "WPA2 PSK";
 break;
 case WIFI_AUTH_WPA_WPA2_PSK:
 authmode = "WPA/WPA2 PSK";
 break;
 default:
 authmode = "Unknown";
 break;
 }
 printf("Lat: %f Long: %f SSID: %15.15s RSSI: %4d AUTH:
%10.10s\n",latitude, longitude,
 wifi[i].ssid, wifi[i].rssi, authmode);

Next, we print all the SSID names with the current position, such as latitude and8.
longitude:

 printf("Lat: %f Long: %f SSID: %15.15s RSSI: %4d AUTH:
%10.10s\n",latitude, longitude,
 wifi[i].ssid, wifi[i].rssi, authmode);

In the main entry named app_main(), we initialize the Wi-Fi service by calling9.
the config_wifi() function.

Making Your Own Wi-Fi Wardriving Chapter 7

[157]

We perform looping to scan all Wi-Fi SSIDs using the esp_wifi_scan_start()10.
function:

int app_main(void)
{
 ESP_LOGI(TAG, "Configuring flash");
 esp_err_t ret = nvs_flash_init();
 if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret ==
ESP_ERR_NVS_NEW_VERSION_FOUND) {
 ESP_ERROR_CHECK(nvs_flash_erase());
 ret = nvs_flash_init();
 }
 ESP_ERROR_CHECK(ret);

Two important aspects are now addressed. One is to configure the Wi-Fi by calling the
config_wifi() function.

The other one is to start a separated freeRTOS task that will configure the UART for GPS
connectivity and receive over the serial connection the values for latitude and
longitude and those that will be paired with the Wi-Fi networks discovered in the
surrounding area.

The latitude and longitude will be available in the other task by using the global variables
latitude and longitude.

 config_wifi();

 ESP_LOGI(TAG, "Configuring UART");
 config_gps_uart();
 wifi_scan_config_t scanConf = {
 .ssid = NULL,
 .bssid = NULL,
 .channel = 0,
 .show_hidden = true
 };

 while(true){
 ESP_ERROR_CHECK(esp_wifi_scan_start(&scanConf, true));
 vTaskDelay(3000 / portTICK_PERIOD_MS);
 }

 return 0;
}

Making Your Own Wi-Fi Wardriving Chapter 7

[158]

Finally, we save all the changes, and then compile and run our program.11.

Testing a program
You can now compile and upload the gpsdemo program to the ESP32 board. To do this,
open the serial tool to see the program output.

Figure 7.8 shows a sample program output from the gpsdemo project. Here, you can see a
list of Wi-Fi SSIDs with latitude and longitude information:

Figure 7.8: The program output for profiling Wi-Fi hotspots and GPS locations

You can also make these devices public by driving in a car or a bicycle to get more Wi-FI
SSID names in the public area. When we are driving via a car or bicycle, our device
performs Wi-Fi scanning to read Wi-Fi SSID names and the GPS location.

Making Your Own Wi-Fi Wardriving Chapter 7

[159]

Mapping Wi-Fi hotspots to Google Maps
If we store our Wi-Fi SSIDs and GPS location in external storage such as a microSD card, we
map the Wi-Fi hotspot into Google Maps. You can view Google Maps at https:/ /www.
google.com/maps/ d/ . After logging into Google Maps, you can see the web form in Figure
7.9:

Figure 7.9: Creating your own map with Google maps

To create a new private map, you can click on the CREATE A NEW MAP button; you will
then see something similar to Figure 7.10.

Now you can upload a CVS file that consists of a Wi-Fi SSID and its locations. You should
see your Wi-Fi SSID names on the map:

Figure 7.10: Uploading CVS data into Google Maps

https://www.google.com/maps/d/
https://www.google.com/maps/d/
https://www.google.com/maps/d/
https://www.google.com/maps/d/
https://www.google.com/maps/d/
https://www.google.com/maps/d/
https://www.google.com/maps/d/
https://www.google.com/maps/d/
https://www.google.com/maps/d/
https://www.google.com/maps/d/
https://www.google.com/maps/d/
https://www.google.com/maps/d/
https://www.google.com/maps/d/

Making Your Own Wi-Fi Wardriving Chapter 7

[160]

You can experiment with what we have learned here in your own time. I recommend
looking at an example of the Wardriving project at https:/ /wigle. net/ .

Privacy issues
Some countries may not allow you to perform Wi-Fi Wardriving due to privacy issues. You
can check your local rules before you perform this task in public areas. You can also change
the SSID names to random names to address these privacy issues.

Summary
In this chapter, we learned how to access the GPS module on the ESP32 board. We also
built a simple Wardriving project to perform Wi-Fi profiling on a GPS location. We have
read Wi-Fi SSIDs and GPS data simultaneously.

In the next chapter, we will learn how to build a Wi-Fi cam with the ESP32 board.

https://wigle.net/
https://wigle.net/
https://wigle.net/
https://wigle.net/
https://wigle.net/
https://wigle.net/
https://wigle.net/
https://wigle.net/

8
Building Your Own Wi-Fi Cam

Video surveillance is one of the monitoring systems that make it possible to obtain current
information from a certain place at any time. This type of surveillance uses a camera to
capture footage from a certain environment. In this chapter, we will build a simple Wi-Fi
cam to take a photo with a camera and an ESP32 board.

We will be covering the following topics in this chapter:

An introduction to Wi-Fi cams
Reviewing a camera module for ESP32
Developing a program for a camera and ESP32

Technical requirements
Before we begin, make sure you have the following things ready:

A computer with an OS installed such as Windows, Linux, or macOS.
An ESP32 development board. We recommend using the ESP-WROVER-KIT v4
board from Espressif.
A Wi-Fi network with internet access capability.
A camera that supports the ESP32 board.

Building Your Own Wi-Fi Cam Chapter 8

[162]

Introducing Wi-Fi cams
A Wi-Fi cam is a system that performs sensing through a camera. With the use of a camera,
we can obtain the current image within a moving video format.

In this chapter, we will focus on working with a camera on an ESP32 board. Technically, we
can connect a camera module on the ESP32 board through a Serial Peripheral
Interface (SPI) protocol. SPI is a serial communication protocol such as UART, but SPI has
a synchronous interface that uses a dedicated clock signal. SPI usually has three pins:
MOSI, MISO, and CS. You can find these pins on the ESP32 board layout.

The ESP-WROVER-KIT board provides a camera connector; this is shown in Figure 8.1:

Figure 8.1: A camera connector on the ESP-WROVER-KIT v4 board

Building Your Own Wi-Fi Cam Chapter 8

[163]

The camera connector on the ESP-WROVER-KIT board is supported by the OV7670 camera
module. This module is shown in Figure 8.2; it is cost-friendly and you can get it at
AliExpress or your local electronic store. If you use another camera module, you should
create a device driver for your camera module:

Figure 8.2: The OV7670 camera module

In this chapter, we will explore the OV7670 camera module with the ESP-WROVER-KIT v4
board.

Reviewing camera modules
Technically, we can use any camera module with supported SPI or I2C protocols. One of
the camera modules with this feature is the OV7670 module. This module is manufactured
by OmniVision; you can find its datasheet at http:/ /www. electronicaestudio. com/ docs/
sht001.pdf.

There are two OV7670 modules available on the market: the OV7670 module with FIFO,
and the OV7670 module without FIFO. The OV7670 module with FIFO can enhance video
processing.

http://www.electronicaestudio.com/docs/sht001.pdf
http://www.electronicaestudio.com/docs/sht001.pdf
http://www.electronicaestudio.com/docs/sht001.pdf
http://www.electronicaestudio.com/docs/sht001.pdf
http://www.electronicaestudio.com/docs/sht001.pdf
http://www.electronicaestudio.com/docs/sht001.pdf
http://www.electronicaestudio.com/docs/sht001.pdf
http://www.electronicaestudio.com/docs/sht001.pdf
http://www.electronicaestudio.com/docs/sht001.pdf
http://www.electronicaestudio.com/docs/sht001.pdf
http://www.electronicaestudio.com/docs/sht001.pdf
http://www.electronicaestudio.com/docs/sht001.pdf
http://www.electronicaestudio.com/docs/sht001.pdf
http://www.electronicaestudio.com/docs/sht001.pdf

Building Your Own Wi-Fi Cam Chapter 8

[164]

You can identify whether the OV7670 camera module is a FIFO model or not by checking
the back of the camera module. The OV7670 camera module with FIFO has an additional
chip on the back of the module. Figure 8.3 shows the OV7670 camera module without FIFO:

Figure 8.3: The back of the OV7670 camera module

Figure 8.4 shows the OV7670 camera module with FIFO. This module has an AL422B IC
that uses FIFO to enhance video processing. You can use this module to get better video
processing. The OV7670 camera module works with a resolution of 640 x 480:

Figure 8.4: The back of the OV7670 FIFO camera module

Building Your Own Wi-Fi Cam Chapter 8

[165]

We can use other camera modules such as OV2640 and OV7725. These modules can work
with the ESP32 board through the SPI protocol. Figure 8.5 shows a form of the OV2640
camera module. This can work with a resolution of 1,600 x 1,200:

Figure 8.5: The OV2640 camera module

Figure 8.6 shows a form of the OV7725 camera module. This module can work with a
resolution of 640 x 480 and 60 frames per second in VGA mode. You can read about the
details of this camera module at https:/ /www. ovt. com/ sensors/ OV7725:

Figure 8.6: The OV7725 camera module

We will use the OV7670 camera module without FIFO for our implementation on the ESP32
board. This camera module is cheaper than the one with the FIFO feature.

https://www.ovt.com/sensors/OV7725
https://www.ovt.com/sensors/OV7725
https://www.ovt.com/sensors/OV7725
https://www.ovt.com/sensors/OV7725
https://www.ovt.com/sensors/OV7725
https://www.ovt.com/sensors/OV7725
https://www.ovt.com/sensors/OV7725
https://www.ovt.com/sensors/OV7725
https://www.ovt.com/sensors/OV7725
https://www.ovt.com/sensors/OV7725
https://www.ovt.com/sensors/OV7725
https://www.ovt.com/sensors/OV7725
https://www.ovt.com/sensors/OV7725

Building Your Own Wi-Fi Cam Chapter 8

[166]

Accessing the camera from ESP32
To access the OV7670 camera module from the ESP32 board, we need to connect its pins
onto the board. Figure 8.7 shows the Pin Mapping recommendation to connect the OV7670
camera module to the ESP32 board:

Figure 8.7: Mapping the OV7670 camera module to the ESP32 board

One of the advantages of using the ESP-WROVER-KIT board is that you don't need an
additional camera connector; you can plug the OV7670 camera module into the board.

The disadvantage of using the ESP-WROVER-KIT board is that you cannot use the OV7670
camera module with a camera connector and the LCD simultaneously, because the camera
connector and the LCD pins use the same wiring on the board. You should change these
pins manually if you want it to work for both the OV7670 camera module and for the LCD
on the ESP-WROVER-KIT board.

Demo – building a Wi-Fi cam
In this section, we will build a simple program for a Wi-Fi cam over a network. We will use
a camera module on the ESP32 board and then we will access the camera connected from a
browser.

Building Your Own Wi-Fi Cam Chapter 8

[167]

Figure 8.8 shows our demo scenario; the ESP32 board will run on a simple web server.
When a browser accesses the ESP32 board, our program will send a response with a picture
of the current environment:

Figure 8.8: The Wi-Fi cam project scenario

For demo purposes, we will use the OV7670 camera module and the ESP-WROVER-KIT
board for implementation.

Hardware wiring
If you have the OV7670 camera module and the ESP-WROVER-KIT board, you can attach
the camera module into the board directly. You can see my wiring in Figure 8.9. Technically,
our camera module and the ESP32 board are wired based on the table in Figure 8.7:

Figure 8.9: Attaching the OV7670 camera module into the ESP-WROVER-KIT v4 board

Next, we will develop a program to implement our project.

Building Your Own Wi-Fi Cam Chapter 8

[168]

Writing a program
First, we create a project called wificam. To access the camera module from the ESP32
board, we need a camera driver. In this demo, we will use a camera driver for this project
named https://github. com/ igrr/ esp32- cam-demo. This camera driver supports
the OV7670 camera model.

Copy the camera and the LCD components into our wificam project; you can see our
project structure in Figure 8.10:

Figure 8.10: The project structure for wificam

For project implementation, we write onto a web server and in a main program to provide
the camera data from the web browsers.

Handling HTTP requests
We will now develop a simple web server to serve HTTP requests. We implement this
program into the http_server.cpp file:

First, we declare our required libraries as follows:1.

#include "lwip/api.h"
#include "camera.h"
#include "bitmap.h"
#include "iot_lcd.h"

https://github.com/igrr/esp32-cam-demo
https://github.com/igrr/esp32-cam-demo
https://github.com/igrr/esp32-cam-demo
https://github.com/igrr/esp32-cam-demo
https://github.com/igrr/esp32-cam-demo
https://github.com/igrr/esp32-cam-demo
https://github.com/igrr/esp32-cam-demo
https://github.com/igrr/esp32-cam-demo
https://github.com/igrr/esp32-cam-demo
https://github.com/igrr/esp32-cam-demo
https://github.com/igrr/esp32-cam-demo
https://github.com/igrr/esp32-cam-demo
https://github.com/igrr/esp32-cam-demo
https://github.com/igrr/esp32-cam-demo
https://github.com/igrr/esp32-cam-demo

Building Your Own Wi-Fi Cam Chapter 8

[169]

#include "app_camera.h"
#include "esp_log.h"
#include "esp_wifi.h"
#include "esp_wpa2.h"
#include "esp_system.h"
#include "nvs_flash.h"

typedef struct {
 uint8_t frame_num;
} camera_evt_t;

QueueHandle_t camera_queue = NULL;

static const char* TAG = "WIFI-CAM";

// camera code
const static char http_hdr[] = "HTTP/1.1 200 OK\r\n";
const static char http_bitmap_hdr[] = "Content-type: image\r\n\r\n";

We create a function task named http_server_task() to run a web server.2.
We open port 80 using netconn_bind(), and listen to incoming connections3.
from the clients using netconn_Listen().
Once our program receives a connection via netconn_accept(), we can process4.
our requests by calling http_server_netconn_serve().
Then, we close the client's connection by calling netconn_delete():5.

void http_server_task(void *pvParameters)
{
 uint8_t i = 0;
 struct netconn *conn, *newconn;
 err_t err, ert;
 conn = netconn_new(NETCONN_TCP); /* creat TCP connector */
 netconn_bind(conn, NULL, 80); /* bind HTTP port */
 netconn_listen(conn); /* server listen connect */
 do {
 ESP_LOGI(TAG, "netconn_accept start :%d\n", xTaskGetTickCount());
 err = netconn_accept(conn, &newconn);
 if (err == ERR_OK) { /* new conn is coming */

 http_server_netconn_serve(newconn, queue_receive());

 ESP_LOGI(TAG, "http_server->xSemaphoreGive:::%d\n", i++);

 netconn_delete(newconn);

Building Your Own Wi-Fi Cam Chapter 8

[170]

 }
 } while (err == ERR_OK);
 netconn_close(conn);
 netconn_delete(conn);
}

The http_server_netconn_serve() function is used to process incoming requests from
the clients. In this function, we only serve the '/bmp' request. We send a picture that is
retrieved from a camera.

We convert a raw image from a camera into the bitmap format by calling
the convert_fb32bit_line_to_bmp565() function. To write a bitmap response to a
client, we can use the netconn_write() function for the ESP32 API:

fbl = (uint32_t *) &currFbPtr[(i * camera_get_fb_width()) / 2];
convert_fb32bit_line_to_bmp565(fbl, s_line, CAMERA_PIXEL_FORMAT);
err = netconn_write(conn, s_line, camera_get_fb_width() * 2, NETCONN_COPY);

Then, we close a client connection by calling netconn_close(). We also define unpack()
to calculate the image size:

inline uint8_t unpack(int byteNumber, uint32_t value)
{
 return (value >> (byteNumber * 8));
}

Once this is done, we save the program.

Developing the main program
Now we write our main program on the app_main.cpp file. First, we declare the
app_main.h header file and store it in the include folder, which is present in the main
folder, as shown in Figure 8.10.

The header file named app_main.h consists of some predefined functions that are
implemented on app_main.cpp and http_server.cpp.

We declare all definitions for our main program as follows:

#ifndef _IOT_CAMERA_TASK_H_
#define _IOT_CAMERA_TASK_H_

#define WIFI_PASSWORD CONFIG_WIFI_PASSWORD
#define WIFI_SSID CONFIG_WIFI_SSID

Building Your Own Wi-Fi Cam Chapter 8

[171]

#define CAMERA_PIXEL_FORMAT CAMERA_PF_RGB565
#define CAMERA_FRAME_SIZE CAMERA_FS_QVGA

#define RGB565_MASK_RED 0xF800
#define RGB565_MASK_GREEN 0x07E0
#define RGB565_MASK_BLUE 0x001F

We define two functions for queue processing, as follows:

uint8_t queue_receive();
void camera_queue_init();

We also declare all functions related to LCD processing, as follows:

void queue_send(uint8_t frame_num);
uint8_t queue_available();
void lcd_init_wifi(void);
void lcd_camera_init_complete(void);
void lcd_wifi_connect_complete(void);
void lcd_http_info(ip4_addr_t s_ip_addr);
void app_lcd_init(void);
void app_lcd_task(void *pvParameters);
void http_server_task(void *pvParameters);
#endif

Next, we implement our main program on the app_main.cpp file. First, we define all the
required header files in app_main.cpp.

We also define the logger message as "WIFI-CAM":

#include "lwip/api.h"
#include "camera.h"
#include "bitmap.h"
#include "iot_lcd.h"
#include "esp_event_loop.h"
#include "app_camera.h"
#include "esp_log.h"
#include "esp_wifi.h"
#include "esp_wpa2.h"
#include "esp_system.h"
#include "nvs_flash.h"
#include "tcpip_adapter.h"
#include "lwip/err.h"
#include "lwip/sockets.h"
#include "lwip/sys.h"
#include "lwip/netdb.h"
#include "lwip/dns.h"
#include "freertos/queue.h"

Building Your Own Wi-Fi Cam Chapter 8

[172]

#include "freertos/event_groups.h"

static const char *TAG = "WIFI-CAM";

static EventGroupHandle_t wifi_event_group;
static const int CONNECTED_BIT = BIT0;
static const int WIFI_INIT_DONE_BIT = BIT1;

In the main entry, we start to initialize the Wi-Fi service, the camera queue buffer, and the
camera device. We call app_camera_init() to initialize the camera device and the camera
queue buffer by calling camera_queue_init(). To initialize the Wi-Fi service on the
ESP32 board, we call the initialize_wifi() function:

extern "C" void app_main()
{
 app_camera_init();
 camera_queue_init();

 initialize_wifi();
 tcpip_adapter_ip_info_t ipconfig;
 tcpip_adapter_get_ip_info(TCPIP_ADAPTER_IF_AP, &ipconfig);
 ip4_addr_t s_ip_addr = ipconfig.ip;

After we have configured the Wi-Fi service, the camera device, and the camera queue
buffer, we run the camera and web server tasks using
the xTaskCreatePinnedToCore() function. For the camera task, we pass
the app_camera_task() function into the xTaskCreatePinnedToCore() function. We
also run the web server task with the http_server_task() function:

 ESP_LOGD(TAG, "Starting app_camera_task...");
 xTaskCreatePinnedToCore(&app_camera_task, "app_camera_task", 4096,
NULL, 3, NULL, 1);

 xEventGroupWaitBits(wifi_event_group, WIFI_INIT_DONE_BIT, true, false,
portMAX_DELAY);
 ESP_LOGD(TAG, "Starting http_server task...");
 xTaskCreatePinnedToCore(&http_server_task, "http_server_task", 4096,
NULL, 5, NULL, 1);
 ESP_LOGI(TAG, "open http://" IPSTR "/pic for single image/bitmap
image", IP2STR(&s_ip_addr));

Building Your Own Wi-Fi Cam Chapter 8

[173]

The initialize_wifi() function is used to initialize the Wi-Fi service. In this scenario,
we create a new AP SSID, called WIFI-CAM, by calling esp_wifi_set_mode() with a
passing WIFI_MODE_AP parameter. We also set the SSID key with a value of "123456789":

void initialize_wifi(void)
{
 tcpip_adapter_ip_info_t ip_info;
 ESP_ERROR_CHECK(nvs_flash_init());
 // set TCP range
 tcpip_adapter_init();
 tcpip_adapter_dhcps_stop(TCPIP_ADAPTER_IF_AP);
 tcpip_adapter_get_ip_info(TCPIP_ADAPTER_IF_AP, &ip_info);
 ip_info.ip.addr = inet_addr("192.168.0.1");
 ip_info.gw.addr = inet_addr("192.168.0.0");
 tcpip_adapter_set_ip_info(TCPIP_ADAPTER_IF_AP, &ip_info);
 tcpip_adapter_dhcps_start(TCPIP_ADAPTER_IF_AP);

Then, we activate our AP SSID using the esp_wifi_set_config() function. We also
define our web server on the 192.168.0.1 IP address:

 wifi_config_t wifi_config;
 memcpy(wifi_config.ap.ssid, "WIFI-CAM", sizeof("WIFI-CAM"));
 memcpy(wifi_config.ap.password, "123456789", sizeof("123456789"));
 wifi_config.ap.ssid_len = strlen("WIFI-CAM");
 wifi_config.ap.max_connection = 1;
 wifi_config.ap.authmode = WIFI_AUTH_WPA_PSK;
 ESP_ERROR_CHECK(esp_wifi_set_config(ESP_IF_WIFI_AP, &wifi_config));
 esp_wifi_start();

We implement the event_handler() function to listen to all events from the Wi-Fi service
on the ESP32 board. We listen to the following five events:

SYSTEM_EVENT_AP_START

SYSTEM_EVENT_AP_STACONNECTED

SYSTEM_EVENT_STA_START

SYSTEM_EVENT_STA_GOT_IP
SYSTEM_EVENT_STA_DISCONNECTED

Building Your Own Wi-Fi Cam Chapter 8

[174]

We connect to the Wi-Fi service when we receive the SYSTEM_EVENT_STA_START
and SYSTEM_EVENT_STA_DISCONNECTED events. We then call the esp_wifi_connect()
function:

 case SYSTEM_EVENT_STA_START:
 esp_wifi_connect();
 break;
 case SYSTEM_EVENT_STA_DISCONNECTED:
 esp_wifi_connect();

The app_camera_init() function is used to configure the camera driver including its
pins. We activate our camera driver using the camera_init() function.

We map all pins to the camera module, as follows:

void app_camera_init()
{
 camera_model_t camera_model;
 camera_config_t config;
 config.ledc_channel = LEDC_CHANNEL_0;
 config.ledc_timer = LEDC_TIMER_0;
 config.pin_d0 = CONFIG_D0;
 config.pin_d1 = CONFIG_D1;
 config.pin_d2 = CONFIG_D2;
 config.pin_d3 = CONFIG_D3;
 config.pin_d4 = CONFIG_D4;
 config.pin_d5 = CONFIG_D5;
 config.pin_d6 = CONFIG_D6;
 config.pin_d7 = CONFIG_D7;
 config.pin_xclk = CONFIG_XCLK;
 config.pin_pclk = CONFIG_PCLK;
 config.pin_vsync = CONFIG_VSYNC;
 config.pin_href = CONFIG_HREF;
 config.pin_sscb_sda = CONFIG_SDA;
 config.pin_sscb_scl = CONFIG_SCL;
 config.pin_reset = CONFIG_RESET;
 config.xclk_freq_hz = CONFIG_XCLK_FREQ;

We perform a probe to test whether the camera module is attached or not. We use
the camera_probe() function to do this:

 esp_err_t err = camera_probe(&config, &camera_model);
 if (err != ESP_OK) {
 ESP_LOGE(TAG, "Camera probe failed with error 0x%x", err);
 return;
 }

Building Your Own Wi-Fi Cam Chapter 8

[175]

If the camera module type is CAMERA_OV7670, we set the frame size of the camera as
follows:

 if (camera_model == CAMERA_OV7670) {
 ESP_LOGI(TAG, "Detected OV7670 camera");
 config.frame_size = CAMERA_FRAME_SIZE;
 } else {
 ESP_LOGI(TAG, "Cant detected ov7670 camera");
 }

Then, we initialize the camera module using the camera_init() function, as follows:

 config.displayBuffer = (uint32_t **) currFbPtr;
 config.pixel_format = CAMERA_PIXEL_FORMAT;
 config.test_pattern_enabled = 0;

 err = camera_init(&config);
 if (err != ESP_OK) {
 ESP_LOGE(TAG, "Camera init failed with error 0x%x", err);
 return;
 }

On the app_main() function, we run our camera task by calling the app_camera_task()
function. In the app_camera_task() function, we capture the camera using
camera_run(). The result of capturing the camera is sent to the camera queue buffer using
the queue_send() function:

static void app_camera_task(void *pvParameters)
{
 while (1) {
 queue_send(camera_run() % CAMERA_CACHE_NUM);

 }
}

After doing this, save all the codes.

Testing
Now you can compile and upload the wificam project into the ESP32 board.

Building Your Own Wi-Fi Cam Chapter 8

[176]

Attach the camera on the ESP32 board and set a targeted area for the camera. You can see
my target area on the camera in Figure 8.11:

Figure 8.11: A photo from the OV7670 camera module with ESP-WROVER-KIT v4

Next, your computer should be connected to the Wi-Fi SSID name from the ESP32 board.
This should show WIFI-CAM as shown in Figure 8.12; please connect to this SSID name:

Figure 8.12: Connecting to WIFI-CAM SSID

Building Your Own Wi-Fi Cam Chapter 8

[177]

You will be asked to enter the SSID key; type the SSID key, 123456789, as shown in Figure
8.13:

Figure 8.13: Filling the SSID key for WIFI-CAM

After your computer is connected to the WIFI-CAM SSID name, you can open a browser.
Navigate to http://192.168.0.1/pic; you should get a picture of a photo captured from
the camera. Figure 8.14 is a sample of the program output on a browser:

Figure 8.14: A photo shot from ESP-WROVER-KIT v4

Building Your Own Wi-Fi Cam Chapter 8

[178]

This is the end of the chapter. Now you can practice more with other camera models. You
can extend this program for video streaming as well. In addition, you can also explore the
ESP-CAM project from Espressif. This project uses the OV2640 camera module. You can
visit this project at https:/ /github. com/ espressif/ esp32- camera.

Summary
In this chapter, we learned how to work with a camera module on the ESP32 board. Here,
we used the OV7670 camera module to capture the images. We also developed a Wi-Fi cam
to take a picture over a network.

Next, we will explore how to use the ESP32 board to interact with a mobile application.

https://github.com/espressif/esp32-camera
https://github.com/espressif/esp32-camera
https://github.com/espressif/esp32-camera
https://github.com/espressif/esp32-camera
https://github.com/espressif/esp32-camera
https://github.com/espressif/esp32-camera
https://github.com/espressif/esp32-camera
https://github.com/espressif/esp32-camera
https://github.com/espressif/esp32-camera
https://github.com/espressif/esp32-camera
https://github.com/espressif/esp32-camera
https://github.com/espressif/esp32-camera
https://github.com/espressif/esp32-camera

9
Making IoT Devices Interact

with Mobile Applications
Mobile devices are now capable of performing daily tasks in the same way as a computer.
People can increase their productivity with the use of mobile devices. In this chapter, we
will explore how to create mobile applications and IoT devices to communicate with each
other. We will use the ESP32 board as an example of an IoT device for this topic.

In this chapter, we will look at the following topics:

Introducing a brief mobile application
Making a mobile application and an ESP32 board interact
Controlling an ESP32 board using a mobile application
Using Android Studio as a development tool.

Technical requirements
Before we begin, make sure you have the following things ready:

A computer with an OS installed such as Windows, Linux, or macOS
An ESP32 development board; we recommend the ESP-WROVER-KIT v4 board
from Espressif
A Wi-Fi network with internet access capability
A mobile device with Android OS
Android Studio (available for download at https:/ /developer. android. com/
studio)

https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio

Making IoT Devices Interact with Mobile Applications Chapter 9

[180]

Introducing mobile applications
A mobile application is a common program that runs on mobile devices. This program is
different from desktop and web applications due to the limited resources on mobile
devices. Technically, we can develop any program on mobile devices depending on the
device's capabilities. Designing UI and UX on mobile devices can also have an impact on
the way the interfaces are implied.

Currently, there are two mainstream platforms in mobile application development:
Android and iOS. Android is developed by Google, and iOS is developed by Apple. In this
chapter, we won't focus on mobile development, but we will focus on how a mobile device
can interact with an ESP32 board.

If you are interested in Android development, you can visit the official
website for Google development at https:/ /developer. android. com/ .
You can find iOS development resources on the Apple development
website at https:/ /developer. apple. com/ .

Making a mobile application and ESP32
interact
There are two ways to make an ESP32 board interact with a mobile application. First, we
can use Wi-Fi and Bluetooth protocols to communicate between a mobile device and an
ESP32 board. ESP32 has Bluetooth capability with its Bluetooth Low Energy (BLE) model.
BLE is a version of Bluetooth technology that provides the same range with considerably
lower power consumption.

If you want to make an ESP32 board interact with mobile devices, the mobile devices
should have a BLE model as well. Otherwise, we cannot connect to an ESP32 board from a
mobile device.

Wi-Fi is one of the most common protocols that mobile devices have. We will use Wi-Fi to
facilitate the interaction of media between the mobile devices and the ESP32 board. We can
use existing Wi-Fi, or our own Wi-Fi access point (AP), to control a device – control will be
possible just within the ESP32 Wi-Fi coverage, and having the ESP32 board in AP mode
means we will not be able to control it from the internet. We can create a Wi-Fi AP on
an ESP32 board, so that mobile devices can then join that particular Wi-Fi AP.

Next, we will build a project to make a mobile device interact with an ESP32 board over
Wi-Fi.

https://developer.android.com/
https://developer.android.com/
https://developer.android.com/
https://developer.android.com/
https://developer.android.com/
https://developer.android.com/
https://developer.android.com/
https://developer.android.com/
https://developer.android.com/
https://developer.android.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/
https://developer.apple.com/

Making IoT Devices Interact with Mobile Applications Chapter 9

[181]

Controlling ESP32 from a mobile application
In this section, we will build a project to enable an ESP32 board to work with mobile
devices. We can create Wi-Fi services on an ESP32 board to allow mobile devices to perform
tasks on ESP32, such as turning on a lamp and turning off a motor. Our scenario is
described in Figure 9.1. For a mobile device platform, we use the Android application.

The way in which a smart mobile project works can be seen in the following diagram:

Figure 9.1: A general design for a smart mobile project

We can control three lamps with an ESP32 board through relay modules as shown in the
preceding diagram. For a simple demonstration, we only use three LEDs for lamp
simulation. We will expose three HTTP services: /ping, /state, and /lamp:

The /ping HTTP request is used to perform an echo test.
The /state HTTP request is used to obtain all the LED states that could be on or
off.
The /lamp HTTP request is used to control the LED-on or off state based on the
input parameter provided by the user.

All /ping and /state request types are HTTP GET. We don't need to send parameters to
perform these requests. However, a /lamp HTTP request is implemented as HTTP POST.
We should specify an input parameter on the request body; we can define the following
input parameters:

Input 1 is to turn on LED 1
Input 2 is to turn off LED 1
Input 3 is to turn on LED 2

Making IoT Devices Interact with Mobile Applications Chapter 9

[182]

Input 4 is to turn off LED 2
Input 5 is to turn on LED 3
Input 6 is to turn off LED 3

When ESP32 receives a /lamp HTTP request with input parameter 1, the ESP32 program
will turn on LED 1. The Android application will perform HTTP requests to the ESP32
board with those request types.

Our program will run the Wi-Fi AP by naming SMART-MOBILE on the ESP32 board. Users
who want to control the lamps should join the Wi-Fi SSID. For testing, I have used the ESP-
WROVER-KIT v4 board as the ESP32 board sample.

Next, we will demonstrate hardware wiring.

Hardware wiring
We need three LEDs and jumper cables in order to perform our hardware wiring. You will
likely need resistors if you are using a different board, for instance, 220 Ohm, to make the
hardware wiring due to the I/O pin voltage level. We connect our LEDs to the IO12, IO14,
and IO26 pinouts of the ESP32 board; Figure 9.2 shows our wiring implementation:

Figure 9.2: Hardware wiring for a smart mobile project

Next, we will develop the ESP32 program.

Making IoT Devices Interact with Mobile Applications Chapter 9

[183]

Developing the ESP32 program
We start by creating an ESP32 project called smartmobile and name the main program file
smartmobile.c. Our program will build a simple web server to serve the HTTP requests
that are described in Figure 9.1.

Let's start working on our smartmobile.c file:

Declare all the required header files in our program. In the following code, we1.
include the files needed to create this project:

#include <esp_wifi.h>
#include <esp_event_loop.h>
#include <esp_log.h>
#include <esp_system.h>
#include <nvs_flash.h>
#include <sys/param.h>

#include "tcpip_adapter.h"
#include "lwip/err.h"
#include "lwip/sockets.h"
#include "lwip/sys.h"
#include "lwip/netdb.h"
#include "lwip/dns.h"
#include "freertos/event_groups.h"

#include <esp_http_server.h>

Define some variables with regards to the log, state, and ESP32 I/O pins. All2.
lamps are defined as IO12, IO14, and IO26; and all lamp states are declared as
the lamp1_state, lamp2_state, and lamp3_state variables:

static const char *TAG="SMARTMOBILE";
static EventGroupHandle_t wifi_event_group;
static const int CONNECTED_BIT = BIT0;
static const int WIFI_INIT_DONE_BIT = BIT1;

#define LAMP1 12
#define LAMP2 14
#define LAMP3 26

int lamp1_state, lamp2_state, lamp3_state;

Making IoT Devices Interact with Mobile Applications Chapter 9

[184]

Start by creating an ESP32 project called smartmobile, and name the main3.
program file smartmobile.c.
In the app_main() entry, initialize the non-volatile storage (NVS) flash by4.
calling the nvs_flash_init() function. NVS is a light memory database that
we can use to store key values on the ESP32 board. You can learn more about
NVS in the official ESP32 documentation at https:/ / docs. espressif. com/
projects/ esp- idf/ en/ latest/ api-reference/ storage/ nvs_ flash. html.
Initialize the ESP32 I/O by calling the initialize_gpio() function.5.
Run the Wi-Fi service on ESP32 with the initialize_wifi() function. The6.
HTTP server handle is declared as a server variable; this variable is passed into
the initialize_wifi() function:

void app_main()
{
 static httpd_handle_t server = NULL;
 ESP_ERROR_CHECK(nvs_flash_init());
 initialize_gpio();
 initialize_wifi(&server);

}

The initialize_gpio() function is used to initialize the ESP32 I/O.

Set the I/O pins as GPIO_MODE_OUTPUT, then set all the LEDs off by calling7.
the gpio_set_level() function by passing a value of 0. This is demonstrated in
the following code:

static void initialize_gpio(){

 ESP_LOGI(TAG, "initialize GPIO");
 // set gpio and its direction
 gpio_pad_select_gpio(LAMP1);
 gpio_set_direction(LAMP1, GPIO_MODE_OUTPUT);

 gpio_pad_select_gpio(LAMP2);
 gpio_set_direction(LAMP2, GPIO_MODE_OUTPUT);

 gpio_pad_select_gpio(LAMP3);
 gpio_set_direction(LAMP3, GPIO_MODE_OUTPUT);

 // turn off lamps
 gpio_set_level(LAMP1, 0);
 gpio_set_level(LAMP2, 0);
 gpio_set_level(LAMP3, 0);

https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/api-reference/storage/nvs_flash.html

Making IoT Devices Interact with Mobile Applications Chapter 9

[185]

 lamp1_state = 0;
 lamp2_state = 0;
 lamp3_state = 0;
}

Initialize a Wi-Fi service on ESP32 with the initialize_wifi() function.8.
Furthermore, create the Wi-Fi AP with the SSID name, SMART-MOBILE, and SSID
key, 123456789. Call the esp_wifi_set_mode() function with
the WIFI_MODE_AP parameter.
Set the Wi-Fi authentication mode as WIFI_AUTH_WPA_PSK. To handle the Wi-Fi9.
events, pass the event_handler() function to the esp_event_loop_init()
function.
The following code shows the initialize_wifi() function implementation:10.

void initialize_wifi(void *arg)
{
 ESP_LOGI(TAG, "initialize Wi-Fi ");

 tcpip_adapter_ip_info_t ip_info;
 //ESP_ERROR_CHECK(nvs_flash_init());
 // set TCP range
 tcpip_adapter_init();
 tcpip_adapter_dhcps_stop(TCPIP_ADAPTER_IF_AP);
 tcpip_adapter_get_ip_info(TCPIP_ADAPTER_IF_AP, &ip_info);
 ip_info.ip.addr = inet_addr("192.168.0.1");
 ip_info.gw.addr = inet_addr("192.168.0.0");
 tcpip_adapter_set_ip_info(TCPIP_ADAPTER_IF_AP, &ip_info);
 tcpip_adapter_dhcps_start(TCPIP_ADAPTER_IF_AP);
 // wifi init
 wifi_event_group = xEventGroupCreate();
 ESP_ERROR_CHECK(esp_event_loop_init(event_handler, arg));
 wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
 ESP_ERROR_CHECK(esp_wifi_init(&cfg));
 ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_AP));

In the wifi_config structure, we will store the Wi-Fi SSID of the AP that will be
created and run by ESP8266:

 wifi_config_t wifi_config;
 memcpy(wifi_config.ap.ssid, "SMART-MOBILE", sizeof("SMART-
MOBILE"));
 memcpy(wifi_config.ap.password, "123456789", sizeof("123456789"));
 wifi_config.ap.ssid_len = strlen("SMART-MOBILE");
 wifi_config.ap.max_connection = 1;
 wifi_config.ap.authmode = WIFI_AUTH_WPA_PSK;
 ESP_ERROR_CHECK(esp_wifi_set_config(ESP_IF_WIFI_AP,

Making IoT Devices Interact with Mobile Applications Chapter 9

[186]

&wifi_config));
 esp_wifi_start();
}

Now that the wifi_config structure is populated with all the information, it's
time to start the Wi-Fi service by calling the esp_wifi_start function.

The event_handler() function is used to listen to all events from the Wi-Fi
service on the ESP32 board. We listen to the following four events:

SYSTEM_EVENT_AP_STACONNECTED

SYSTEM_EVENT_STA_START

SYSTEM_EVENT_STA_GOT_IP
SYSTEM_EVENT_STA_DISCONNECTED

Start our web server by calling the start_webserver() function when we get11.
an SYSTEM_EVENT_AP_STACONNECTED event from the Wi-Fi service:

static esp_err_t event_handler(void *ctx, system_event_t *event)
{
 httpd_handle_t *server = (httpd_handle_t *) ctx;

 switch (event->event_id) {

 case SYSTEM_EVENT_AP_STACONNECTED:
 xEventGroupSetBits(wifi_event_group, CONNECTED_BIT);
 ESP_LOGI(TAG, "sta connect");

 /* Start the web server */
 if (*server == NULL) {
 *server = start_webserver();
 }
 break;

Then, stop the web server using the stop_webserver() function when we call12.
the SYSTEM_EVENT_STA_DISCONNECTED event from the Wi-Fi service:

 switch (event->event_id) {
 ...
 case SYSTEM_EVENT_STA_DISCONNECTED:
 esp_wifi_connect();
 /* Stop the web server */
 if (*server) {
 stop_webserver(*server);
 *server = NULL;
 }

Making IoT Devices Interact with Mobile Applications Chapter 9

[187]

 break;
 default:
 break;
 }

Use the start_webserver() and stop_webserver() functions to start and13.
stop our web server. We can use the httpd_start() function to start the HTTP
server, and the httpd_stop() function to stop the HTTP server. We should
register all HTTP requests on the ESP32 board. When we start our web server, we
register all HTTP requests for /ping, /state, and /lamp using
the httpd_register_uri_handler() function.

We register all HTTP requests on the ESP32 board by starting our web server, as
shown in the following code:

httpd_handle_t start_webserver(void)
{
 httpd_handle_t server = NULL;
 httpd_config_t config = HTTPD_DEFAULT_CONFIG();

 // Start the httpd server
 ESP_LOGI(TAG, "Starting server on port: '%d'",
config.server_port);
 if (httpd_start(&server, &config) == ESP_OK) {
 // Set URI handlers
 ESP_LOGI(TAG, "Registering URI handlers");
 httpd_register_uri_handler(server, &state);
 httpd_register_uri_handler(server, &lamp_post);
 httpd_register_uri_handler(server, &ping);
 return server;
 }

 ESP_LOGI(TAG, "Error starting server!");
 return NULL;
}

void stop_webserver(httpd_handle_t server)
{
 // Stop the httpd server
 httpd_stop(server);
}

The /ping request is declared as a ping variable with httpd_uri_t.14.
We implement the /ping request on the ping_get_handler() function. We15.
then send a "pong!" message to the requester.

Making IoT Devices Interact with Mobile Applications Chapter 9

[188]

We can implement the ping_get_handler() function, as follows:

esp_err_t ping_get_handler(httpd_req_t *req)
{
 const char* resp_str = (const char*) req->user_ctx;
 httpd_resp_send(req, resp_str, strlen(resp_str));

 return ESP_OK;
}

httpd_uri_t ping = {
 .uri = "/ping",
 .method = HTTP_GET,
 .handler = ping_get_handler,
 .user_ctx = "pong!"
};

The /state request is declared as a state variable with httpd_uri_t.16.
We then implement the /state request on the state_get_handler() function.17.
We send all lamp states from the lamp1_state, lamp2_state, and
lamp3_state variables, as follows:

esp_err_t state_get_handler(httpd_req_t *req)
{
 char buf[15];
sprintf(buf,"1:%d,2:%d,3:%d",lamp1_state,lamp2_state,lamp3_state);
 httpd_resp_send(req, buf, strlen(buf));
 return ESP_OK;
}

httpd_uri_t state = {
 .uri = "/state",
 .method = HTTP_GET,
 .handler = state_get_handler,
 .user_ctx = NULL
};

The /lamp request is declared as a lamp variable with httpd_uri_t. We18.
implement the /lamp request on the state_get_handler() function. We then
parse the request content and perform a task based on its content input:

/* An HTTP POST handler */
esp_err_t lamp_post_handler(httpd_req_t *req)
{
 char buf[100];
 int ret, remaining = req->content_len;
 while (remaining > 0) {

Making IoT Devices Interact with Mobile Applications Chapter 9

[189]

 buf[0] = '\0';
 if ((ret = httpd_req_recv(req, &buf, 1)) <= 0) {
 if (ret == HTTPD_SOCK_ERR_TIMEOUT) {
 httpd_resp_send_408(req);
 }
 return ESP_FAIL;
 }
 buf[ret] = '\0';
 ESP_LOGI(TAG, "Recv HTTP => %s", buf);
 switch(buf[0]){

 }

}

The input content is from steps 1 to 6:

1: turn on lamp1

2: turn off lamp1

3: turn on lamp2

4: turn off lamp2

5: turn on lamp3

6: turn off lamp3

The following code performs these tasks to check the status of the lamps, in our case let's
take step 1:

 switch(buf[0]){
 case '1':
 ESP_LOGI(TAG, ">>> Turn on LAMP 1");
 gpio_set_level(LAMP1, 1);
 sprintf(buf,"Turn on LAMP 1");
 httpd_resp_send_chunk(req, buf, strlen(buf));
 lamp1_state = 1;
 break;
...
 // End response
 httpd_resp_send_chunk(req, NULL, 0);
 return ESP_OK;
}

Making IoT Devices Interact with Mobile Applications Chapter 9

[190]

Then, we call the pass lamp_post_handler() function into the httpd_uri_t object:

httpd_uri_t lamp_post = {
 .uri = "/lamp",
 .method = HTTP_POST,
 .handler = lamp_post_handler,
 .user_ctx = NULL
};

Finally, save this program.

We have now seen how to to build an ESP32 program, and have checked the status of the
lamps to study their states.

Next, we will develop Android application.

Developing an Android application
In this section, we will develop an Android application. You can check the system
requirements for installing Android Studio on the official Android website. For the
Android application, we will use Kotlin as a programming language. If you are not familiar
with Kotlin, I recommend learning it through websites or books. The official Kotlin website
can be found at https:/ /kotlinlang. org/ .

To communicate with the ESP32 board via HTTP requests, we will use the Volley library.
This library can perform HTTP GET, POST, DEL, and PUT requests on the web server. For
further information about the Volley library, you can visit this tutorial: https:/ /
developer.android. com/ training/ volley.

Next, we will create an Android project.

Creating an Android project
Android Studio makes it easy to create Android projects because it has good IDE
functionality. We will build an Android application to access the ESP32 program in this
project. Let's create an Android project using Android Studio, which can be installed for
Windows, Linux, and macOS.

https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://kotlinlang.org/
https://developer.android.com/training/volley
https://developer.android.com/training/volley
https://developer.android.com/training/volley
https://developer.android.com/training/volley
https://developer.android.com/training/volley
https://developer.android.com/training/volley
https://developer.android.com/training/volley
https://developer.android.com/training/volley
https://developer.android.com/training/volley
https://developer.android.com/training/volley
https://developer.android.com/training/volley
https://developer.android.com/training/volley

Making IoT Devices Interact with Mobile Applications Chapter 9

[191]

Once Android Studio has been installed, perform the following steps:

Select Basic Activity for the project template, as shown in Figure 9.3. Then, click1.
on the Next button:

Figure 9.3: Selecting project template for Android

Making IoT Devices Interact with Mobile Applications Chapter 9

[192]

You will get a form as shown in Figure 9.4. Fill in your project name and select2.
Kotlin as the programming language. For Minimum API level, you can select
your own API. In this project, I used API 22: Android 5.1 (Lollipop):

Figure 9.4: Setting the project configuration

After all the fields in the form's dialog box are filled in (as seen in Figure 9.4), we3.
click on the Finish button. You will get your project files and configurations in
Android Studio (refer to Figure 9.5).

Next, we configure our project.

Making IoT Devices Interact with Mobile Applications Chapter 9

[193]

Configuring the Android project
Let's start configuring the project, as follows:

Android Studio uses Gradle to configure an Android project. We will include the1.
Volley library in the build.gradle file. You can add the Volley library by
adding the following script:

dependencies {
 ...
 implementation 'com.android.volley:volley:1.1.1'

}

Android Studio will load all libraries based on the changed Gradle
configuration file.

Since our project accesses the internet, we should configure the security2.
permissions by adding android.permission.INTERNET on the
AndroidManifest.xml file, as follows:

<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
 package="id.ilmudata.agusk.mysmartmobile">

 <uses-permission android:name="android.permission.INTERNET" />
 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 ...
 </activity>
 </application>

</manifest>

Finally, save all changes in the code.3.

Next, we will build the UI from our application.

Making IoT Devices Interact with Mobile Applications Chapter 9

[194]

Building the UI Android program
We will develop a simple UI for our program; we will use two buttons and three
switches to control the components.

To do this, perform the following instructions:

We will design our UI as shown in Figure 9.5. The PING ESP32 button is used to1.
perform the /ping request to the ESP32 board, while the GET LAMP SATES
button is used to get lamp states from the /state request to the ESP32 board.
Three switch controls are represented by three lamps; if the switch control is on,2.
we turn on a lamp:

Figure 9.5: Developing the UI for the Android application

We implement our Android UI on the content_main.xml and3.
activity_main.xml files. These files can be found in the Layout folder from
your Android project.

Making IoT Devices Interact with Mobile Applications Chapter 9

[195]

We map our event, android:onclick, on all buttons in content_main.xml.4.
The following scripts are the events on the button controls:

 <Button
 android:text="Ping ESP32"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/btnPing" android:onClick="pingESP32"
 android:layout_marginTop="28dp"
app:layout_constraintTop_toBottomOf="@+id/textView"
 android:layout_marginStart="40dp"
app:layout_constraintStart_toStartOf="parent"/>
 <Button
 android:text="Get Lamp States"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/btnState"
android:layout_marginTop="76dp"
 app:layout_constraintTop_toTopOf="parent"
app:layout_constraintStart_toStartOf="parent"
 android:layout_marginStart="196dp"
android:onClick="getLampStates"/>

We also map our switch controls to changed events. We should set a control ID5.
for each switch control. The following scripts are the switch controls on
the content_main.xml file:

 <Switch
 android:text="Lamp 1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/lamp1"
android:layout_marginTop="156dp"
 app:layout_constraintTop_toTopOf="parent"
app:layout_constraintStart_toStartOf="parent"
 android:layout_marginStart="40dp"/>
 <Switch
 android:text="Lamp 2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/lamp2"
android:layout_marginTop="156dp"
 app:layout_constraintTop_toTopOf="parent"
app:layout_constraintStart_toStartOf="parent"
 android:layout_marginStart="164dp"/>
 <Switch
 android:text="Lamp 3"

Making IoT Devices Interact with Mobile Applications Chapter 9

[196]

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/lamp3"
android:layout_marginTop="156dp"
 app:layout_constraintTop_toTopOf="parent"
app:layout_constraintStart_toStartOf="parent"
 android:layout_marginStart="288dp"/>

After saving these scripts, we can move on to developing our main program.6.

Writing an Android program
Our main program is found in the MainActivity.kt file. We need to implement our
control events through the button and switch controls:

Load all the required libraries, as follows:1.

import android.os.Bundle
import android.support.design.widget.Snackbar
import android.support.v7.app.AppCompatActivity
import android.view.Menu
import android.view.MenuItem
import android.view.View
import android.widget.Toast

import kotlinx.android.synthetic.main.activity_main.*
import android.widget.Switch
import com.android.volley.AuthFailureError
import com.android.volley.Request
import com.android.volley.Response
import com.android.volley.toolbox.StringRequest
import com.android.volley.toolbox.Volley

Define the pingESP32() function to receive the onlick event from the PING2.
ESP32 button. Then, call the /ping request to the ESP32 board. A response from
the ESP32 board will be displayed in the Toast control by calling
the makeText() function:

 fun pingESP32(view : View){
 val queue = Volley.newRequestQueue(this@MainActivity)
 val url = "http://192.168.0.1/ping"

 val stringRequest = StringRequest(Request.Method.GET, url,
 Response.Listener<String> { response ->
 Toast.makeText(this,"Response:
$response",Toast.LENGTH_LONG).show()

Making IoT Devices Interact with Mobile Applications Chapter 9

[197]

 },
 Response.ErrorListener { volleyError ->
Toast.makeText(this,"$volleyError",Toast.LENGTH_LONG).show()
 })

 queue.add(stringRequest)
 }

To retrieve all the lamp states, define the getLampStates() function. This3.
function is called when a user taps the GET LAMP STATES button. In
the getLampStates() function program, call the /state request to the ESP32
board. The response result will be displayed in the Toast control, as follows:

 fun getLampStates(view : View){
 val queue = Volley.newRequestQueue(this@MainActivity)
 val url = "http://192.168.0.1/state"

 val stringRequest = StringRequest(Request.Method.GET, url,
 Response.Listener<String> { response ->
 Toast.makeText(this,"Response:
$response",Toast.LENGTH_LONG).show()

 },
 Response.ErrorListener { volleyError ->
Toast.makeText(this,"$volleyError",Toast.LENGTH_LONG).show()
 })

 queue.add(stringRequest)
 }

In the onCreate event from Android, initialize our program, including4.
the setOnCheckedChangeLister mapping event from the switch controls. If
the switch control value is changed, call the applyLamp() function to turn a
lamp on or off:

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 setContentView(R.layout.activity_main)
 setSupportActionBar(toolbar)

 val lamp1witch = findViewById(R.id.lamp1) as Switch
 lamp1witch.setOnCheckedChangeListener { buttonView,
isChecked ->
 if(isChecked){
 //Toast.makeText(this,"Lamp 1

Making IoT Devices Interact with Mobile Applications Chapter 9

[198]

on",Toast.LENGTH_LONG).show()
 applyLamp(1)
 }else{
 //Toast.makeText(this,"Lamp 1
off",Toast.LENGTH_LONG).show()
 applyLamp(2)
 }
 }
 val lamp2witch = findViewById(R.id.lamp2) as Switch
 lamp2witch.setOnCheckedChangeListener { buttonView,
isChecked ->
 if(isChecked){
 //Toast.makeText(this,"Lamp 2
on",Toast.LENGTH_LONG).show()
 applyLamp(3)
 }else{
 //Toast.makeText(this,"Lamp 2
off",Toast.LENGTH_LONG).show()
 applyLamp(4)
 }
 }

You should write the same code for lamp2witch and lamp3witch, but
change R.id.lamp1 to R.id.lamp2 and R.id.lamp3. Also, the applyLamp(x)
function will take parameters 3 and 4 for lamp2, and parameters 5 and 6 for
lamp3:

 val lamp3witch = findViewById(R.id.lamp3) as Switch
 lamp3witch.setOnCheckedChangeListener { buttonView, isChecked ->
 if(isChecked){
 //Toast.makeText(this,"Lamp 3 on",Toast.LENGTH_LONG).show()
 applyLamp(5)
 }else{
 //Toast.makeText(this,"Lamp 3 off",Toast.LENGTH_LONG).show()
 applyLamp(6)
 }
 }
 }

Making IoT Devices Interact with Mobile Applications Chapter 9

[199]

Use the applyLamp() function to send the /lamp request to the ESP32 board.5.
The input data is then sent to a request body. The result of the /lamp request will
be displayed using the Toast control:

 fun applyLamp(cmd: Int){
 val queue = Volley.newRequestQueue(this@MainActivity)
 val url = "http://192.168.0.1/lamp"

 val stringRequest = object: StringRequest(Request.Method.POST,
url,
 Response.Listener<String> { response ->
 Toast.makeText(this,"Response:
$response",Toast.LENGTH_LONG).show()

 },

 queue.add(stringRequest)

 }

Save all the codes; now you can compile the Android project by clicking on compile to
ensure that no errors remain in the project.

Next, we perform testing for our project.

Testing a program with Postman
We will use the Postman tool to perform HTTP GET/POST testing. You can download the
Postman tool at https:/ / www. getpostman. com/. This tool can be used to analyze a RESTful
API from a web application. We can test HTTP methods such as GET, POST, DEL, and PUT
with Postman. We can also modify the HTTP header before we send a HTTP request to the
server.

https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/
https://www.getpostman.com/

Making IoT Devices Interact with Mobile Applications Chapter 9

[200]

For our demonstration, we will first join the Wi-Fi SSID from the ESP32 program. This
should show SMART-MOBILE from the SSID list; you can see this in Figure 9.6:

From our ESP32 program, we set an SSID key as 123456789. You can input the1.
SSID key that you have entered by connecting it to the Wi-Fi:

Figure 9.6: Joining SMART-MOBILE from the ESP32 SSID

Making IoT Devices Interact with Mobile Applications Chapter 9

[201]

After joining the SMART-MOBILE Wi-Fi, we can start to test our program. You can2.
run the Postman tool for this; perform the following three test scenarios:

Perform an echo test by setting HTTP GET with
the http://192.168.0.1/ping address.
Get all the current lamp states by setting HTTP GET with
the http://192.168.0.1/state address.
Turn a lamp on or off by setting HTTP POST with
the http://192.168.0.1/lamp address. Set a request body with
the 1...6 value.

If you have set these fields, you can click on the Send button to send data to the3.
ESP32 board. You will then get a response from the ESP32 board. Figure 9.7
shows a program output from Postman after sending the /lamp request with a
value inputted as 6:

Figure 9.7: Testing the ESP32 web server with Postman

After we have successfully performed testing with Postman, we can continue to test using
the Android application.

Making IoT Devices Interact with Mobile Applications Chapter 9

[202]

Testing the program with Android
You can test your Android application in an emulator or on a real device. In this test, I use
an Android emulator. Before you run an Android emulator, your computer should be
connected to the Wi-Fi SSID from the ESP32 board.

After we have deployed our project to the Android emulator, we will get our application.
Figure 9.8 shows an example of the Android application in an emulator:

Figure 9.8: Running the Android application on an emulator

Making IoT Devices Interact with Mobile Applications Chapter 9

[203]

First, you can click on the PING ESP32 button to ensure that the Android application is
able to connect to the ESP32 board. If you succeed, you will see the notification as shown in
Figure 9.9. If you don't get a response from ESP32, you should check your network on the
ESP32 board:

Figure 9.9: The response from clicking on the PING ESP32 button

Making IoT Devices Interact with Mobile Applications Chapter 9

[204]

Now you can turn lamps on or off by tapping the switch controls on the Android
application. You should get a response notification from a web server on the ESP32 board.
Figure 9.10 shows a notification response when turning on Lamp 1:

Figure 9.10: Turning on Lamp 1 (LED 1)

We can extend this project to control the sensor and actuator devices on the ESP32 board
through the Android application.

Making IoT Devices Interact with Mobile Applications Chapter 9

[205]

Summary
In this chapter, you have learned how to develop an ESP32 program and an Android
application, and then made the two interact using the Wi-Fi protocol as a communication
medium. You can use this approach to control some sensor and actuator devices on the
ESP32 program over the Android application. We also learned how to build a BLE service
on the ESP32 board, and how to make interactions between a ESP32 board and mobile
Android device possible through BLE.

In the next chapter, we will make an ESP32 board interact with a cloud system.

10
Building IoT Monitoring with

Cloud Technology
Cloud computing provides advanced technology with capabilities in performance and
scalability. In this chapter, we will explore how to work with cloud computing on
platforms, such as Amazon Web Services (AWS) connect ESP32 boards. By connecting
ESP32 boards with cloud servers, we can increase our Internet of Things IoT solutions to
serve more clients.

In this chapter, we will explore the following topics:

An introduction to cloud technology
Connecting ESP32 to cloud platforms
Accessing Amazon AWS and Microsoft Azure from ESP32
Building IoT monitoring with ESP32 and AWS IoT

Technical requirements
Before we begin, make sure you have the following things ready:

A computer with an OS installed such as Windows, Linux, or macOS.
An ESP32 development board. We recommended the ESP-WROVER-KIT v4
board from Espressif.
A Wi-Fi network with internet access.
An active account for Amazon AWS.

Building IoT Monitoring with Cloud Technology Chapter 10

[207]

Introducing cloud technology
Cloud technology enables us to scale our infrastructure and software capabilities. Some
companies are likely to have issues with investing in software and hardware. In addition,
both software and hardware need to be maintained in order to keep up performance,
security, and scalability.

In general, cloud technology services provide three models that can address our business
problems. The following is a list of cloud technology services:

Platform as a Service (PaaS): This service enables us to get a platform for
managing applications without worrying about the infrastructure.
Infrastructure as a Service (IaaS): This service provides the infrastructure for our
solution without investing in server hardware.
Software as a Service (SaaS): This service provides software that we can use any
time.

Some cloud companies, such as Amazon AWS, Microsoft Azure, and Google Cloud,
provide these three services. With cloud resources, we only pay for what we use.

In this chapter, we will use AWS to show how cloud technology works. Then, we will
connect our ESP32 board to the cloud servers.

Connecting ESP32 to cloud platforms
Technically, cloud providers provide an SDK and API to enable access from other
applications and systems. Cloud SDKs usually support some runtime and programming
language in order to build a cloud application.

To connect our IoT device to a cloud server, we should check the cloud provider services
for an IoT platform. Amazon AWS has a cloud service for IoT called AWS IoT. Various IoT
platforms can connect and make interactions with AWS IoT. Since AWS has various cloud
services, we can make our AWS IoT integrate with other AWS resources. For further
information about AWS IoT, you can visit the official website at http:/ / aws.amazon. com/
iot.

Next, we will build an ESP32 program to access AWS IoT.

http://aws.amazon.com/iot
http://aws.amazon.com/iot
http://aws.amazon.com/iot
http://aws.amazon.com/iot
http://aws.amazon.com/iot
http://aws.amazon.com/iot
http://aws.amazon.com/iot
http://aws.amazon.com/iot
http://aws.amazon.com/iot
http://aws.amazon.com/iot

Building IoT Monitoring with Cloud Technology Chapter 10

[208]

Building IoT monitoring with ESP32 and
AWS
In this section, we will develop an ESP32 program to connect to Amazon AWS; we will use
AWS IoT services. Our scenario is to send sensor data to AWS IoT. To perform our demo,
we will complete the following steps:

Performing hardware wiring
Registering an IoT device
Configuring a device security policy in AWS IoT
Developing the ESP32 program

Next, we implement each step to build our project.

Hardware wiring
We use the DHT22 module as a sensor device for our ESP32 board. We have to use similar
hardware wiring from the dhtdemo project, which you can read about in Chapter 2,
Making Visual Data and Animation on an LCD.

Next, we should register our IoT device on AWS IoT.

Registering an IoT device
Each IoT device that wants to access AWS IoT should be registered. We will get certificate
files from AWS IoT, and then we will include these files in our ESP32 board. Firstly, you
should have an active AWS account in order to register an IoT device to AWS IoT.

You can follow these steps to register an IoT device to AWS IoT:

Open a browser and navigate to the AWS IoT console, found at http:/ /1.
console. aws. amazon. com/ iot/ home.

http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home

Building IoT Monitoring with Cloud Technology Chapter 10

[209]

Log in with your AWS account; if you succeed, you should see the AWS IoT2.
console:

Figure 10.1: The AWS IoT console

Now, we create a new IoT device.3.
Click on Manage | Things in the left-hand menu.4.
Then, you will get a web form as shown in Figure 10.2.5.

Building IoT Monitoring with Cloud Technology Chapter 10

[210]

Click on the Create button to create a new IoT device:6.

Figure 10.2: Creating a new IoT device

You will get a web form, as shown in Figure 10.3.7.

Building IoT Monitoring with Cloud Technology Chapter 10

[211]

Click on the Create a single thing button to create a new IoT device:8.

Figure 10.3: Registering a single device

After clicking on the Create a single thing button, you get a web form as shown9.
in Figure 10.4.

Building IoT Monitoring with Cloud Technology Chapter 10

[212]

Fill out your IoT device name, as shown in the following screenshot:10.

Figure 10.4: Giving your device a name

When this is done, we can create a certificate for our device.11.
You should get a web form as shown in Figure 10.5.12.

Building IoT Monitoring with Cloud Technology Chapter 10

[213]

Click on the Create certificate button, as shown in the following screenshot:13.

Figure 10.5: Creating a device certificate

After clicking on the button, you should get your device's certificates, as shown14.
in Figure 10.6.
Download all the certificate files, including a root CA for AWS IoT.15.
After they have downloaded, you can click on the Activate button to activate16.
your device and certificates:

Building IoT Monitoring with Cloud Technology Chapter 10

[214]

Figure 10.6: A result of generating device certificates

Now you have one IoT device on AWS IoT.

Next, we continue to configure a device security policy to enable our device to connect to
the AWS IoT server.

Configuring a device security policy
Each device certificate that is created in AWS IoT should be attached with a security policy.
A device security policy consists of access permissions to the AWS IoT server. If you don't
attach a security policy to your device certificate, your IoT device can't access AWS IoT.

You can follow these steps to configure a device security policy:

Open a browser and navigate to the AWS IoT console, found at http:/ /1.
console. aws. amazon. com/ iot/ home.

Log on with your AWS account; if you succeed, you should see the AWS IoT2.
console.

http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home
http://console.aws.amazon.com/iot/home

Building IoT Monitoring with Cloud Technology Chapter 10

[215]

Click on the Secure | Policies menu so that you can get a web form, as shown in3.
Figure 10.7.
Click on the Create button, as shown in the following screenshot:4.

Figure 10.7: Creating a security policy

After you have clicked on Create, you will get a web form as shown in Figure5.
10.8.
Next, fill out your policy name.6.

Building IoT Monitoring with Cloud Technology Chapter 10

[216]

Add a policy statement with the iot:* Action and the * Resource ARN. This7.
statement enables our IoT device to access AWT IoT services:

Figure 10.8: Giving the policy name and its permissions

Create this security policy.8.
Now you can click on the Secure | Certificates menu.9.
Select your device certificate and click on the Actions menu.10.

Building IoT Monitoring with Cloud Technology Chapter 10

[217]

Click on Attach policy in the drop-down, as shown in Figure 10.9:11.

Figure 10.9: Attaching a security policy into a certificate

After clicking on the menu, you should get a dialog box as shown in Figure 10.10.12.
Select all of our security policies.13.
When you are done, click on the Attach button:14.

Building IoT Monitoring with Cloud Technology Chapter 10

[218]

Figure 10.10. Selecting a security policy

Now your device certificate has a security policy.

Next, we will develop an ESP32 program to access AWS IoT.

Developing an ESP32 program
In this section, we will develop an ESP32 program. Our program scenario is to send sensor
data to AWS IoT. We will use the DHT22 module as a sensor device; this module generates
temperature and humidity sensor data. We will also learn about DHT22 so that we can
focus on AWS IoT.

We will modify a project sample from Espressif. You can download this project sample at
https://github.com/ espressif/ esp- idf/ tree/ master/ examples/ protocols/ aws_ iot.

Next, we will create a demo project.

https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot

Building IoT Monitoring with Cloud Technology Chapter 10

[219]

Creating a project
We can create a project by creating a folder, called awsiot. You can clone the aws_iot
project from https:/ /github. com/ espressif/ esp-idf/ tree/ master/ examples/
protocols/aws_iot. Change the main program to awsiot.c, and the Makefile program
to awsiot.

Our ESP32 program uses server authentication to access AWS IoT. We should put all the
device certificate files into our project folder, including the root CA, the device certificate,
and the private certificate.

You should put all the certificate files shown in Figure 10.6 into the certs folder of the
project folder. Then, rename your certificate files as follows:

The root CA for AWS IoT is renamed as aws-root-ca.pem.
The device certificate file is renamed as certificate.pem.crt.
The private certificate file is renamed as private.pem.key.

You can see the project structure and certificate files in Figure 10.11:

Figure 10.11: The project structure

Next, we will configure our project to enable it to work with AWS IoT.

https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot
https://github.com/espressif/esp-idf/tree/master/examples/protocols/aws_iot

Building IoT Monitoring with Cloud Technology Chapter 10

[220]

Configuring a project
We should configure our project in order to access AWS IoT. We will configure the Wi-Fi
SSID, the device certificate files, and the AWS IoT server.

You can follow these steps to configure the project:

Open Terminal and run menuconfig by typing this command:1.

$ make menuconfig

You should get the menuconfig dialog.2.
Select the Example Configuration menu.3.
Then, you will get a dialog box as shown in Figure 10.12.4.
Set your SSID and its SSID key.5.
You will also need to set AWT IoT Client ID; you can type any ID for this value:6.

Figure 10.12: Configuring the Wi-Fi and AWS IoT Client ID

Once that's done, we also need to configure the certificate files.7.
You can navigate to AWS IoT Certificate Source to generate the certificates, as8.
shown in Figure 10.12.
Then, you will get a form as shown in Figure 10.13.9.

Building IoT Monitoring with Cloud Technology Chapter 10

[221]

Select the Embed into app option:10.

Figure 10.13: Selecting the embedded certificate files in the program

Now you are back to the root menu of menuconfig.11.
We should now set the AWS IoT server endpoint.12.
Navigate to Component config | Amazon Web Service IoT Platform.13.
You should get a form that is similar to the one shown in Figure 10.14:14.

Figure 10.14: Filling the AWS IoT server endpoint

Building IoT Monitoring with Cloud Technology Chapter 10

[222]

Select the AWS IoT Endpoint Hostname menu.15.
Fill out your AWS IoT endpoint.16.
You will now find your AWS IoT endpoint on the AWS IoT console. You will17.
find it in the Settings menu, as shown in Figure 10.15:

Figure 10.15: Getting the AWS IoT server endpoint name

When this is done, save all the configuration on menuconfig.

Next, we will write and modify our ESP32 program.

Building IoT Monitoring with Cloud Technology Chapter 10

[223]

Writing the ESP32 program
To write our ESP32 program, follow these steps:

In the main program, using the awsiot.c file, we add our library header, which1.
is DHT. We then set the ESP32 IO26 on the DHT22 pin; this is shown in the
following code:

#include <dht.h>
static const dht_sensor_type_t sensor_type = DHT_TYPE_DHT22;
static const gpio_num_t dht_gpio = 26;

 In the aws_iot_task() function, we need to change our AWS IoT topic2.
to sensor/esp32:

 const char *TOPIC = "sensor/esp32";
 const int TOPIC_LEN = strlen(TOPIC);

 sprintf(cPayload, "%s : %d ", "hello from SDK", i);
 paramsQOS0.qos = QOS0;
 paramsQOS0.payload = (void *) cPayload;
 paramsQOS0.isRetained = 0;

We perform a looping by using a loop (such as the while loop used in the3.
following code) to read the temperature and humidity data from DHT22. Then,
we send this data to AWS IoT:

 while((NETWORK_ATTEMPTING_RECONNECT == rc || NETWORK_RECONNECTED == rc ||
SUCCESS == rc)) {

 //Max time the yield function will wait for read messages
 rc = aws_iot_mqtt_yield(&client, 100);
 if(NETWORK_ATTEMPTING_RECONNECT == rc) {
 // If the client is attempting to reconnect we will skip the
rest of the loop.
 continue;
 }

 }

Building IoT Monitoring with Cloud Technology Chapter 10

[224]

We use the dht_read_data() function to get the temperature and humidity4.
data. To send data to AWS IoT, we can use the
aws_iot_mqtt_publish() function:

 int16_t temperature = 0;
 int16_t humidity = 0;
 if (dht_read_data(sensor_type, dht_gpio, &humidity, &temperature)
== ESP_OK){
 printf("Humidity: %d%% Temp: %d^C\n", humidity / 10,
temperature / 10);
 sprintf(cPayload, "Humidity: %d%% Temp: %d^C\n", humidity / 10,
temperature / 10);
 }
 vTaskDelay(5000 / portTICK_RATE_MS);
 paramsQOS0.payloadLen = strlen(cPayload);
 rc = aws_iot_mqtt_publish(&client, TOPIC, TOPIC_LEN, ¶msQOS0);
 if (rc == MQTT_REQUEST_TIMEOUT_ERROR) {
 ESP_LOGW(TAG, "QOS1 publish ack not received.");
 rc = SUCCESS;
 }

Finally, save the program.5.

Next, we need to compile, flash, and test our program in ESP32.

Compiling, flashing, and testing
Now you can compile and flash the ESP32 program. Your ESP32 board should already be
attached to the computer; you can type this command:

$ make flash

Building IoT Monitoring with Cloud Technology Chapter 10

[225]

After the program has been flashed into the ESP32 board, you can open a serial tool such as
CoolTerm. Open your ESP32 board serial; you should see the program output that shows
sensor data, as shown in Figure 10.16:

Figure 10.16: The program output on the serial tool

Now we can test our program using the MQTT client app from AWS. MQTT is a light
protocol that is used to communicate among IoT devices. Further information about MQTT
can be found at http:/ /mqtt. org/ .

Now, you can find the MQTT client tool on the AWS IoT console's Test menu:

http://mqtt.org/
http://mqtt.org/
http://mqtt.org/
http://mqtt.org/
http://mqtt.org/
http://mqtt.org/
http://mqtt.org/
http://mqtt.org/
http://mqtt.org/

Building IoT Monitoring with Cloud Technology Chapter 10

[226]

Figure 10.17: Working with the MQTT client

Set the Subscription topic to the topic that we have already let on our ESP32 program.
Then, click on the Subscribe to topic button. After clicking on this, we can see the message
from the ESP32 program, as shown in Figure 10.18:

Figure 10.18: The program output from the MQTT client

Building IoT Monitoring with Cloud Technology Chapter 10

[227]

You can extend this project by adding some sensor devices to the ESP32 board.

Summary
In this chapter, we have learned how to work with AWS IoT. We created an ESP32 program
to send temperature and humidity sensor data to AWS IoT. We have tried to build a
communication between AWS IoT and ESP32 over MQTT. This skill can be extended to
other IoT devices.

This is the end of this book. I hope you have enjoyed reading it. You can extend all the book
projects for your own purpose.

Further reading
I have written a book with Packt Publishing about AWS IoT, called Learning AWS IoT. You
can get this book at https:/ / www. packtpub. com/ virtulization- and- cloud- learning-
aws-iot.

https://www.packtpub.com/virtulization-and-cloud-learning-aws-iot
https://www.packtpub.com/virtulization-and-cloud-learning-aws-iot
https://www.packtpub.com/virtulization-and-cloud-learning-aws-iot
https://www.packtpub.com/virtulization-and-cloud-learning-aws-iot
https://www.packtpub.com/virtulization-and-cloud-learning-aws-iot
https://www.packtpub.com/virtulization-and-cloud-learning-aws-iot
https://www.packtpub.com/virtulization-and-cloud-learning-aws-iot
https://www.packtpub.com/virtulization-and-cloud-learning-aws-iot
https://www.packtpub.com/virtulization-and-cloud-learning-aws-iot
https://www.packtpub.com/virtulization-and-cloud-learning-aws-iot
https://www.packtpub.com/virtulization-and-cloud-learning-aws-iot
https://www.packtpub.com/virtulization-and-cloud-learning-aws-iot
https://www.packtpub.com/virtulization-and-cloud-learning-aws-iot
https://www.packtpub.com/virtulization-and-cloud-learning-aws-iot
https://www.packtpub.com/virtulization-and-cloud-learning-aws-iot
https://www.packtpub.com/virtulization-and-cloud-learning-aws-iot
https://www.packtpub.com/virtulization-and-cloud-learning-aws-iot
https://www.packtpub.com/virtulization-and-cloud-learning-aws-iot
https://www.packtpub.com/virtulization-and-cloud-learning-aws-iot
https://www.packtpub.com/virtulization-and-cloud-learning-aws-iot
https://www.packtpub.com/virtulization-and-cloud-learning-aws-iot

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Internet of Things for Architects
Perry Lea

ISBN: 978-1-78847-059-9

Understand the role and scope of architecting a successful IoT deployment, from
sensors to the cloud
Scan the landscape of IoT technologies that span everything from sensors to the
cloud and everything in between
See the trade-offs in choices of protocols and communications in IoT
deployments
Build a repertoire of skills and the vernacular necessary to work in the IoT space
Broaden your skills in multiple engineering domains necessary for the IoT
architect

https://www.packtpub.com/hardware-and-creative/internet-things-architects

Other Books You May Enjoy

[229]

Internet of Things Programming Projects
Colin Dow

ISBN: 978-1-78913-480-3

Install and set up a Raspberry Pi for IoT development
Learn how to use a servo motor as an analog needle meter to read data
Build a home security dashboard using an infrared motion detector
Communicate with a web service that sends you a message when the doorbell
rings
Receive data and display it with an actuator connected to the Raspberry Pi
Build an IoT robot car that is controlled through the internet

https://www.packtpub.com/application-development/internet-things-programming-projects

Other Books You May Enjoy

[230]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Amazon Web Services (AWS)
 about 206
 used, for building IoT monitoring 208
Arduino programming
 for ESP32 20, 21
Arduino Sketch
 creating, with ESP32 23, 25
 download link 20
auto-refresh weather application 132, 133

B
Bluetooth Low Energy (BLE) model 6, 180

C
camera modules
 reviewing 163, 165
camera
 accessing, form ESP32 board 166
Cloud Platforms
 ESP32, connecting to 207
cloud technology services
 about 207
 Infrastructure as Service (IaS) 207
 Platform as Service (PaS) 207
 Software as Service (SaS) 207
connectGPS module, for accessing location
 program, running 151
 program, writing 148, 150

D
development boards-based ESP32
 ESP32 development kit 8
 reviewing 7
 third-party boards-based ESP32 10, 11
DHT sensors

 working with 125
DHT22 sensor module, for weather monitoring

system
 program, building 31, 33
 program, running 33
DHT22 sensor module
 used, for reading humidity 30
 used, for reading temperature 30
 wiring 30, 31

E
embedded game
 building 64
 hardware wiring 66
 playing 71
 program, developing 66, 68, 71
 scenario 65
ESP32 board, with mobile devices
 about 180
 Android application, developing 190
 Android program, writing 196, 198
 Android project, configuring 193
 Android project, creating 190, 192
 ESP32 program, developing 183, 184, 186
 hardware wiring 182
 program, testing with Android 202, 204
 program, testing with Postman 199, 201
 project, building 181, 182
 UI Android program, building 194, 196
ESP32 board
 camera, accessing form 166
 controlling, from mobile application 181, 182
ESP32 GPIO 28, 29
ESP32 program
 building 12
 compiling 19, 224, 226
 deploying 218

[232]

 flashing 19, 224, 226
 project, configuring 17, 18, 220, 221, 222
 project, creating 14, 219
 testing 224, 226
 wiring 12, 14, 16
 writing 223, 224
ESP32 Wi-Fi development 89
ESP32
 about 6
 Arduino programming 20, 21
 connecting, to Cloud Platforms 207
 microSD card, accessing 74, 76, 79
 reference 7
 used, for building IoT monitoring 208
 used, for building Wi-Fi Wardriving 154
 used, for connecting sound buzzer 62
 used, for creating Arduino Sketch program 23,

25

 used, for wiring program 63, 64
 web server, building 100, 105, 107
Espressif
 development environment, setting up 12
existing Wi-Fi network
 connecting to 93, 95

G
game embedded systems 54
general-purpose input/output (GPIO) 27
Google Maps
 Wi-Fi hotspots, mapping 159, 160
GPS data
 parsing 152, 154
GPS module, for accessing location
 about 147
 hardware wiring 148
GPS module
 reviewing 145, 147
Greenwich Mean Time (GMT) 146

H
humidity
 reading, from DHT22 sensor module 30

I
Infrastructure as Service (IaS) 207
Internet of Things (IoT) 6, 88, 123, 206
IoT monitoring, building with ESP32 and AWS
 about 208
 device security policy, configuring 214, 217
 hardware wiring 208
 IoT device, registering 208, 212, 214
IoT weather monitoring system 29
IoT weather station
 building 125, 126
 hardware wiring 126
 program, testing 131, 132
 program, writing 126, 128, 130

J
joystick sensor module
 about 55, 57
 joystickdemo program, executing 61
 joystickdemo project, creating 59
 program, wiring 60
 wiring 58
 working with 57

L
LCD
 ESP-WROVER-KIT v4 board, configuring 40,

41, 44
 ESP32 program, writing 38, 39
 hardware wiring 35, 36
 image files, displaying 45, 48
 program, flashing 44
 program, running 44
 project, creating 37
 used, for displaying information 35

M
microSD card
 accessing, from ESP32 74, 76, 79
 sensor data, storing 80
minmea library
 reference 152
mobile application
 about 180

 ESP32 board, interacting 180

N
non-volatile storage (NVS) 184

P
Platform as Service (PaS) 207

S
sensor monitoring logger
 about 73, 74
 building 81
 program, designing 82
 program, executing 86
 program, wiring 83, 85
Serial Peripheral Interface (SPI) 162
smart home application, ESP32
 about 111
 hardware wiring 112
 HTTP requests, handling 112
 web server program, testing 117, 120, 121
 web server program, writing 114, 116
Software as Service (SaS) 207
sound buzzer
 connecting, with ESP32 62
 program, writing with ESP32 63, 64
 working with 62
SparkFun Joystick Shield Kit
 reference 56

T
temperature
 reading, from DHT22 sensor module 30
Thumb Joystick
 reference 55

W

weather monitoring system project
 creating 48, 49
 hardware wiring 49
 program, flashing 51
 program, running 51
 program, writing 50, 51
weather station
 about 124
 massive data request, handling for 133
 program, testing 140, 141
 program, writing for ESP32 134, 136
 program, writing for Node.js 136, 139
web server, ESP32
 HTTP requests, building 101, 103, 105
 program, testing 107, 109, 111
web server
 building, inside ESP32 100
 data, accessing form 95, 97, 99
Wi-Fi cam project
 creating 168
 HTTP requests, handling 168, 170
 program, developing 170, 172, 175
 testing 175, 177
Wi-Fi cams
 about 162, 163
 building 166
 hardware wiring 167
 program, writing 168
Wi-Fi hotspots
 mapping, to Google Maps 159, 160
 scanning 89, 91
Wi-Fi Wardriving, building with ESP32
 about 154
 hardware wiring 154
 program, testing 158
 program, writing 155, 157
Wi-Fi Wardriving
 about 144, 145
 privacy issues 160

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with ESP32
	Technical requirements
	Introduction to ESP32
	Reviewing development boards-based ESP32
	The official ESP32 development kit
	Third-party boards-based ESP32

	Setting up the development environment
	Demo 1 – building your first ESP32 program
	Wiring
	Creating a project
	Writing the program
	Configuring the project
	Compiling and flashing

	Arduino programming for ESP32
	Demo 2 - making an Arduino Sketch program with ESP32
	Summary
	Further reading

	Chapter 2: Making Visual Data and Animation on an LCD
	Technical requirements
	Introduction to ESP32 GPIO
	Introduction to IoT for weather monitoring systems
	Reading temperature and humidity from a sensor device
	Wiring
	Building a program
	Running the program

	Displaying information using an LCD
	Hardware wiring
	Creating a project
	Writing an ESP32 program
	Configuring the ESP-WROVER-KIT v4 board
	Flashing and running a program
	Displaying image files

	Making a weather monitoring system
	Creating a project
	Hardware wiring
	Writing a program
	Flashing and running

	Summary
	Further reading

	Chapter 3: Building a Simple Game with an Embedded ESP32 Board
	Technical requirements
	Introducing game-embedded systems
	Introducing the joystick sensor module
	Working with the joystick sensor module
	Wiring
	Creating a project
	Writing the program
	Running the program

	Working with a sound buzzer
	Connecting the sound buzzer with the ESP32
	Writing a program for the sound buzzer with the ESP32

	Demo – building a simple embedded game
	The game scenario
	Hardware wiring
	Developing the game program
	Playing the game

	Summary

	Chapter 4: Building a Sensor Monitoring Logger
	Technical requirements
	Introducing the sensor monitoring logger
	Accessing a microSD card from the ESP32
	Demo – accessing microSD cards from the ESP32
	Storing sensor data on a microSD card
	Project – building a sensor monitoring logger
	Designing our program
	Writing the program
	Running the program

	Summary

	Chapter 5: Controlling IoT Devices over the Internet
	Technical requirements
	Introducing ESP32 Wi-Fi development
	Scanning Wi-Fi hotspot
	Connecting to an existing Wi-Fi network
	Accessing data from a web server
	Building your own web server inside ESP32
	Building HTTP requests
	Building a web server
	Testing the program

	Project - making a smart home
	Hardware wiring
	Handling HTTP requests
	Writing a web server program
	Testing the program

	Summary

	Chapter 6: Building an IoT Weather Station
	Technical requirements
	Introducing a weather station
	Working with DHT sensors
	Building an IoT weather station
	Hardware wiring
	Writing the program
	Testing the program

	The auto-refresh weather application
	Handling a massive data request for a weather station
	Writing a program for ESP32
	Writing a program for Node.js
	Testing the program

	Summary

	Chapter 7: Making Your Own Wi-Fi Wardriving
	Technical requirements
	Introducing Wi-Fi Wardriving
	Reviewing the GPS module
	Accessing your location via the GPS module
	Hardware wiring
	Writing a program
	Running a program

	Parsing GPS data
	Building your own Wi-Fi Wardriving with ESP32
	Hardware wiring
	Writing a program
	Testing a program

	Mapping Wi-Fi hotspots to Google Maps
	Privacy issues
	Summary

	Chapter 8: Building Your Own Wi-Fi Cam
	Technical requirements
	Introducing Wi-Fi cams
	Reviewing camera modules
	Accessing the camera from ESP32
	Demo – building a Wi-Fi cam
	Hardware wiring
	Writing a program
	Handling HTTP requests
	Developing the main program

	Testing

	Summary

	Chapter 9: Making IoT Devices Interact with Mobile Applications
	Technical requirements
	Introducing mobile applications
	Making a mobile application and ESP32 interact
	Controlling ESP32 from a mobile application
	Hardware wiring
	Developing the ESP32 program
	Developing an Android application
	Creating an Android project
	Configuring the Android project
	Building the UI Android program
	Writing an Android program

	Testing a program with Postman
	Testing the program with Android

	Summary

	Chapter 10: Building IoT Monitoring with Cloud Technology
	Technical requirements
	Introducing cloud technology
	Connecting ESP32 to cloud platforms
	Building IoT monitoring with ESP32 and AWS
	Hardware wiring
	Registering an IoT device
	Configuring a device security policy
	Developing an ESP32 program
	Creating a project
	Configuring a project
	Writing the ESP32 program

	Compiling, flashing, and testing

	Summary
	Further reading

	Other Books You May Enjoy
	Index

