
1

Software process models (pg 29 – 54)

1 . The waterfall model This takes the fundamental process activities of

specification, development, validation, and evolution and represents them as
separate process phases such as requirements specification, software design,
implementation, testing, and so on.

Cleanroom software engineering An example of a formal development process, originally
developed by IBM, is the Cleanroom process. In the Cleanroom process each software increment is
formally specified and this specification is transformed into an implementation. Software correctness
is demonstrated using a formal approach.

There is no unit testing for defects in the process and the system testing is focused on
assessing the system’s reliability.

The objective of the, In principle, the waterfall model should only be used when the
requirements are well understood and unlikely to change radically during system
development.

However, the waterfall model reflects the type of process used in other engineering
projects. As is easier to use a common management model for the whole project, software
processes based on the waterfall model are still commonly used.

2

2 Incremental development This approach interleaves the activities of
specification, development, and validation. The system is developed as a series of
versions (increments), with each version adding functionality to the previous version.

Problems with incremental development

Although incremental development has many advantages, it is not problem-free. The primary cause of the
difficulty is the fact that large organizations have bureaucratic procedures that have evolved over time and there

may be a mismatch between these procedures and a more informal iterative or agile process.
Sometimes these procedures are there for good reasons—for example, there may be procedures to ensure

that the software properly implements external regulations (e.g., in the United States, the Sarbanes-Oxley

accounting regulations). Changing these procedures may not be possible so process conflicts may be
unavoidable.
http://www.SoftwareEngineering-9.com/Web/IncrementalDev/

Incremental development in some form is now the most common approach for the
development of application systems. This approach can be either plan-driven, agile,
or, more usually, a mixture of these approaches. In a plan-driven approach, the system
increments are identified in advance; if an agile approach is adopted, the early increments
are identified but the development of later increments depends on progress and
customer priorities.

From a management perspective, the incremental approach has two problems:

1. The process is not visible. Managers need regular deliverables to measure progress. If
systems are developed quickly, it is not cost-effective to produce documents that reflect every
version of the system.

2. System structure tends to degrade as new increments are added. Unless time and
money is spent on refactoring to improve the software, regular change tends to corrupt its
structure. Incorporating further software changes becomes increasingly difficult and costly.

The problems of incremental development become particularly acute for large, complex, long-
lifetime systems, where different teams develop different parts of the system.

Large systems need a stable framework or architecture and the responsibilities of the
different teams working on parts of the system need to be clearly defined with respect to that
architecture.

 This has to be planned in advance rather than developed incrementally.
You can develop a system incrementally and expose it to customers for comment, without

actually delivering it and deploying it in the customer’s environment.Incremental delivery and
deployment means that the software is used in real, operational processes. This is not always
possible as experimenting with new software can disrupt normal business processes.

http://www.softwareengineering-9.com/Web/IncrementalDev/

3

3 Reuse-oriented software engineering This approach is based on the
existence of a significant number of reusable components. The system development
process focuses on integrating these components into a system rather than
developing them from scratch.

In the majority of software projects, there is some software reuse.
 This often happens informally when people working on the project know of designs or code

that are similar to what is required. They look for these, modify them as needed, and incorporate
them into their system.

This informal reuse takes place irrespective of the development process that is used.

However, in the 21st century, software development processes that focus on the reuse of
existing software have become widely used.

Reuse-oriented approaches rely on a large base of reusable software components and an

integrating framework for the composition of these components. Sometimes, these components are
systems in their own right (COTS or commercial off-the-shelf systems) that may provide specific
functionality such as word processing or a spreadsheet.

A general process model for reuse-based development is shown in Figure 2.3. Although the

initial requirements specification stage and the validation stage are comparable with other
software processes, the intermediate stages in a reuseoriented process are different.

There are three types of software component that may be used in a reuse-oriented
process:

1. Web services that are developed according to service standards and which are
available for remote invocation.

2. Collections of objects that are developed as a package to be integrated with a
component framework such as .NET or J2EE.

3. Stand-alone software systems that are configured for use in a particular environment.

Reuse-oriented software engineering has the obvious advantage of reducing the amount of
software to be developed and so reducing cost and risks.

It usually also leads to faster delivery of the software. However, requirements compromises are
inevitable and this may lead to a system that does not meet the real needs of users.

Furthermore, some control over the system evolution is lost as new versions of the reusable
components are not under the control of the organization using them. However, Software reuse
is very important.

4

Process activities
Real software processes are interleaved sequences of technical, collaborative, and

managerial activities with the overall goal of specifying, designing, implementing, and testing a
software system. Software developers use a variety of different software tools in their work. Tools are
particularly useful for supporting the editing of different types of document and for managing the
immense volume of detailed information that is generated in a large software project.

The four basic process activities
1. of specification,
2. development,
3. validation,
4. and evolution

are organized differently in different development processes. In the waterfall model, they are
organized in sequence, whereas in incremental development they are interleaved. How these
activities are carried out depends on the type of software, people, and organizational structures
involved. In extreme programming, for example,

- specifications are written on cards.
- Tests are executable and developed before the program itself.
- Evolution may involve substantial system restructuring or refactoring.

Software development tools:

Software development tools (sometimes called Computer-Aided Software Engineering or CASE tools) are
programs that are used to support software engineering process activities. These tools therefore include design
editors, data dictionaries, compilers, debuggers, system building tools, etc.

Software tools provide process support by automating some process activities and by providing information
about the software that is being developed.
Examples of activities that can be automated include:

_ The development of graphical system models as part of the requirements specification or the software design
_ The generation of code from these graphical models
_ The generation of user interfaces from a graphical interface description that is created interactively by the user

_ Program debugging through the provision of information about an executing program
_ The automated translation of programs written using an old version of a programming language to a more
recent version

Tools may be combined within a framework called an Interactive Development Environment or IDE. This
provides a common set of facilities that tools can use so that it is easier for tools to communicate and operate in an
integrated way. The ECLIPSE IDE is widely used and has been designed to incorporate many different types of

software tools.

5

Software design and implementation

The diagram suggests that the stages of the design process are sequential. In fact, design

process activities are interleaved. Feedback from one stage to another and consequent design rework
is inevitable in all design processes.

Normally, programmers carry out some testing of the code they have developed. This often

reveals program defects that must be removed from the program. This is called debugging. Defect
testing and debugging are different processes. Testing establishes the existence of defects.
Debugging is concerned with locating and correcting these defects.

When you are debugging, you have to generate hypotheses about the observable behavior of
the program then test these hypotheses in the hope of finding the fault that caused the output
anomaly. Testing the hypotheses may involve tracing the program code manually. It may require new
test cases to localize the problem. Interactive debugging tools, which show the intermediate values of
program variables and a trace of the statements executed, may be used to support the debugging
process.

The stages in the testing process are:
1. Development testing The components making up the system are tested by the people

developing the system. Each component is tested independently, without other system
components. Components may be simple entities such as functions or object classes, or may
be coherent groupings of these entities. Test automation tools, such as JUnit (Massol and
Husted, 2003), that can re-run component tests when new versions of the component are
created, are commonly used.

2. System testing System components are integrated to create a complete system. This
process is concerned with finding errors that result from unanticipated interactions between
components and component interface problems. It is also concerned with showing that the
system meets its functional and non-functional requirements, and testing the emergent

6

system properties. For large systems, this may be a multi-stage process where components
are integrated to form subsystems that are individually tested before these sub-systems are
themselves integrated to form the final system.

3. Acceptance testing This is the final stage in the testing process before the system is
accepted for operational use. The system is tested with data supplied by the system customer
rather than with simulated test data. Acceptance testing may reveal errors and omissions in
the system requirements definition, because the real data exercise the system in different
ways from the test data. Acceptance testing may also reveal requirements problems where
the system’s facilities do not really meet the user’s needs or the system performance is
unacceptable.

Software evolution

The flexibility of software systems is one of the main reasons why more and more software is
being incorporated in large, complex systems. Once a decision has been made to manufacture
hardware, it is very expensive to make changes to the hardware design. However, changes can be
made to software at any time during or after the system development. Even extensive changes are
still much cheaper than corresponding changes to system hardware. Historically, there has always
been a split between the process of software development and the process of software evolution
(software maintenance). People think of software development as a creative activity in which a
software system is developed from an initial concept through to a working system. However,
they sometimes think of software maintenance as dull and uninteresting. Although the costs of
maintenance are often several times the initial development costs, maintenance processes are
sometimes considered to be less challenging than original software development.

This distinction between development and maintenance is increasingly irrelevant. Hardly any
software systems are completely new systems and it makes much more sense to see development
and maintenance as a continuum. Rather than two separate processes, it is more realistic to think of
software engineering as an evolutionary process where software is continually changed over its
lifetime in response to changing requirements and customer needs.

7

Coping with change
Change is inevitable in all large software projects. The system requirements change as the

business procuring the system responds to external pressures and management priorities change.
As new technologies become available, new design and implementation possibilities emerge.
Therefore whatever software process model is used, it is essential that it can accommodate changes
to the software being developed.

There are two related approaches that may be used to reduce the costs of rework:
1. Change avoidance, where the software process includes activities that can anticipate

possible changes before significant rework is required. For example, a prototype system
may be developed to show some key features of the system to customers. They can
experiment with the prototype and refine their requirements before committing to high
software production costs.

2. Change tolerance, where the process is designed so that changes can be accommodated at
relatively low cost. This normally involves some form of incremental development. Proposed
changes may be implemented in increments that have not yet been developed. If this is
impossible, then only a single increment (a small part of the system) may have to be altered
to incorporate the change.

In the next section, we wil discuss about two ways of coping with change and changing system
requirements. These are:

1. System prototyping, where a version of the system or part of the system is developed
quickly to check the customer’s requirements and the feasibility of some design decisions.
This supports change avoidance as it allows users to experiment with the system before
delivery and so refine their requirements. The number of requirements change proposals
made after delivery is therefore likely to be reduced.

2. Incremental delivery, where system increments are delivered to the customer for comment
and experimentation. This supports both change avoidance and change tolerance. It
avoids the premature commitment to requirements for the whole system and allows changes
to be incorporated into later increments at relatively low cost.

Prototyping

A prototype is an initial version of a software system that is used to demonstrate
concepts, try out design options, and find out more about the problem and its possible solutions.
Rapid, iterative development of the prototype is essential so that costs are controlled and system
stakeholders can experiment with the prototype early in the software process. A software prototype
can be used in a software development process to help anticipate changes that may be required:

1. In the requirements engineering process, a prototype can help with the elicitation and
validation of system requirements.

2. In the system design process, a prototype can be used to explore particular software
solutions and to support user interface design.

System prototypes allow users to see how well the system supports their work. They may get

new ideas for requirements, and find areas of strength and weakness in the software. They may then
propose new system requirements. Furthermore, as the

8

prototype is developed, it may reveal errors and omissions in the requirements that have been
proposed. A function described in a specification may seem useful and well defined. However, when
that function is combined with other functions, users often find that their initial view was incorrect or
incomplete. The system specification may then be modified to reflect their changed understanding of
the requirements.

A system prototype may be used while the system is being designed to carry aut design
experiments to check the feasibility of a proposed design.

For example:
1. A database design may be prototyped and tested to check that it supports efficient

data access for the most common user queries.
2. Prototyping is also an essential part of the user interface design process. Because of the

dynamic nature of user interfaces, textual descriptions and diagrams are not good
enough for expressing the user interface requirements. Therefore, rapid prototyping with
end-user involvement is the only sensible way to develop graphical user interfaces for
software systems.

3. A general problem with prototyping is that the prototype may not necessarily be used in the
same way as the final system. The tester of the prototype may not be typical of system users.

4. The training time during prototype evaluation may be insufficient. If the prototype is slow, the
evaluators may adjust their way of working and avoid those system features that have slow
response times. When provided with better response in the final system, they may use it in a
different way.

Developers are sometimes pressured by managers to deliver throwaway prototypes,

particularly when there are delays in delivering the final version of the software. However, this is
usually unwise:

1. It may be impossible to tune the prototype to meet non-functional requirements, such as
performance, security, robustness, and reliability requirements, which were ignored during
prototype development.

2. Rapid change during development inevitably means that the prototype is
undocumented. The only design specification is the prototype code. This is not good
enough for long-term maintenance.

3. The changes made during prototype development will probably have degraded the system
structure. The system will be difficult and expensive to maintain.

4. Organizational quality standards are normally relaxed for prototype development.
Prototypes do not have to be executable to be useful. Paper-based mock-ups of the system
user interface (Rettig, 1994) can be effective in helping users refine an interface design and
work through usage scenarios. These are very cheap to develop and can be constructed in a
few days. An extension of this technique is a Wizard of prototype where only the user
interface is developed. Users interact with thisinterface but their requests are passed to a
person who interprets them and outputs the appropriate response.

9

Incremental delivery

Incremental delivery has a number of advantages:
1. Customers can use the early increments as prototypes and gain experience that

informs their requirements for later system increments. Unlike prototypes, these are part
of the real system so there is no re-learning when the complete system is available.

2. Customers do not have to wait until the entire system is delivered before they can
gain value from it. The first increment satisfies their most critical requirements so they
can use the software immediately.

3. The process maintains the benefits of incremental development in that it should be
relatively easy to incorporate changes into the system.

4. As the highest-priority services are delivered first and increments then integrated, the
most important system services receive the most testing. This means that customers are
less likely to encounter software failures in the most important parts of the system.
However, there are problems with incremental delivery:

5. Most systems require a set of basic facilities that are used by different parts of the
system. As requirements are not defined in detail until an increment is to be
implemented, it can be hard to identify common facilities that are needed by all
increments.

6. Iterative development can also be difficult when a replacement system is being
developed. Users want all of the functionality of the old system and are often unwilling to
experiment with an incomplete new system. Therefore, getting useful customer feedback
is difficult.

7. The essence of iterative processes is that the specification is developed in
conjunction with the software. However, this conflicts with the procurement model of
many organizations, where the complete system specification is part of the system
development contract. In the incremental approach, there is no complete system
specification until the final increment is specified. This requires a new form of contract,
which large customers such as government agencies may find difficult to accommodate.

There are some types of system where incremental development and delivery is not the best

approach.
These are very large systems where development may involve teams working in different

locations, some embedded systems where the software depends on hardware development and
some critical systems where all the requirements must be analyzed to check for interactions that may
compromise the safety or security of the system.

These systems, of course, suffer from the same problems of uncertain and changing
requirements. Therefore, to address these problems and get some of the benefits of incremental
development, a process may be used in which a system prototype is developed iteratively and used
as a platform for experiments with the system requirements and design. With the experience gained
from the prototype, definitive requirements can then be agreed.

10

Boehm’s spiral model

A risk-driven software process framework (the spiral model) was proposed byBoehm (1988).

This is shown in Figure 2.11. Here, the software process is representedas a spiral, rather than a
sequence of activities with some backtracking fromone activity to another. Each loop in the spiral
represents a phase of the softwareprocess. Thus, the innermost loop might be concerned with system
feasibility, thenext loop with requirements definition, the next loop with system design, and so on.
The spiral model combines change avoidance with change tolerance. It assumes that changes are a
result of project risks and includes explicit risk management activitiesto reduce these risks.

Each loop in the spiral is split into four sectors:

1. Objective setting
A) Specific objectives for that phase of the project are defined.
B) Constraints on the process and the product are identified and a detailed management

plan is drawn up.
C) Project risks are identified.
D) Alternative strategies, depending on these risks, may be planned.

2. Risk assessment and reduction
A) For each of the identified project risks, a detailed analysis is carried out.
B) Steps are taken to reduce the risk. For example, if there is a risk that the requirements

are inappropriate, a prototype system may be developed.
3. Development and validation

A) After risk evaluation, a development model for the system is chosen. For example,
throwaway prototyping may be the best development approach if user interface risks are
dominant.

B) If safety risks are the main consideration, development based on formal transformations
may be the most appropriate process, and so on.

C) If the main identified risk is sub-system integration,the waterfall model may be the best
development model to use.

11

E) Planning The project is reviewed and a decision made whether to continue with a further
loop of the spiral. If it is decided to continue, plans are drawn up for the next phase of the
project.

The Rational Unified Process
The Rational Unified Process (RUP) (Krutchen, 2003) is an example of a modern process

model that has been derived from work on the UML and the associated Unified Software
Development Process (Rumbaugh, et al., 1999; Arlow and Neustadt, 2005).

We have included a description here, as it is a good example of a hybrid process model.
It

4. brings together elements from all of the generic process models discussed above,
5. illustrates good practice in specification and design above and supports prototyping

and incremental delivery .

The RUP recognizes that conventional process models present a single view of the

process. In contrast, the RUP is normally described from three perspectives:

1. A dynamic perspective, which shows the phases of the model over time.
2. A static perspective, which shows the process activities that are enacted.
3. A practice perspective, which suggests good practices to be used during the

process.

Most descriptions of the RUP attempt to combine the static and dynamic perspectives in a
single diagram (Krutchen, 2003). That makes the process harder to understand, so is better to use
separate descriptions of each of these perspectives.

The RUP is a phased model that identifies four discrete phases in the software process.
However, unlike the waterfall model where phases are equated with process activities, the phases in
the RUP are more closely related to business rather than technical concerns. Figure 2.11
shows the phases in the RUP. These are:

1. Inception The goal of the inception phase is to establish a business case for the system.
You should identify all external entities (people and systems) that will

interact with the system and define these interactions. You then use this information to assess the
contribution that the system makes to the business. If this contribution is minor, then the project may
be cancelled after this phase.
2. Elaboration The goals of the elaboration phase are to develop an understanding of the
problem domain, establish an architectural framework for the system, develop the project plan, and
identify key project risks. On completion of this phase you should have a requirements model for the
system, which may be a set of UML use-cases, an architectural description, and a development plan
for the software.
3. Construction The construction phase involves system design, programming, and testing.
Parts of the system are developed in parallel and integrated during this phase. On completion of this
phase, you should have a working software system and associated documentation that is ready for
delivery to users.
4. Transition The final phase of the RUP is concerned with moving the system from the
development community to the user community and making it work in a real environment. This
is something that is ignored in most software process models but is, in fact, an expensive and

12

sometimes problematic activity. On completion of this phase, you should have a documented software
system that is working correctly in its operational environment.

Iteration within the RUP is supported in two ways. Each phase may be enacted in an
iterative way with the results developed incrementally. In addition, the whole set of phases may also
be enacted incrementally, as shown by the looping arrow from Transition to Inception in Figure 2.12.

The static view of the RUP focuses on the activities that take place during the development
process. These are called workflows in the RUP description. There are six core process workflows
identified in the process and three core supporting workflows.

The RUP has been designed in conjunction with the UML, so the workflow description is
oriented around associated UML models such as sequence models, object models, etc. The core
engineering and support workflows are described in Figure 2.13.

The advantage in presenting dynamic and static views is that phases of the development
process are not associated with specific workflows. In principle at least, all of the RUP workflows may
be active at all stages of the process. In the early phases of the process, most effort will probably be
spent on workflows such as business modelling and requirements and, in the later phases, in testing
and deployment.

Static workflows in the Rational Unified Process

Business modelling The business processes are modelled using business
use cases.

Requirements Actors who interact with the system are identified and
use cases are developed to model the system
requirements

Analysis and design A design model is created and documented using
architectural models, component models, object
models, and sequence models.

Implementation The components in the system are implemented and
structured into implementation sub-systems. Automatic
code generation from design models helps accelerate
this process.

Testing Testing is an iterative process that is carried out in
conjunction with implementation. System testing follows
the completion of the implementation

Deployment A product release is created, distributed to users, and
installedin their workplace

Configuration and change
management

This supporting workflow manages changes to the
system (see Chapter 25).

Project management This supporting workflow manages the system
development (see Chapters 22 and 23).

Environment This workflow is concerned with making appropriate
software tools available to the software development
team.

. The practice perspective on the RUP describes good software engineering practices that are
recommended for use in systems development. Six fundamental best practices are recommended:

13

1. Develop software iteratively Plan increments of the system based on customer priorities and
develop the highest-priority system features early in the development process.

2. Manage requirements Explicitly document the customer’s requirements and keep track of
changes to these requirements. Analyze the impact of changes on the system before
accepting them.

3. Use component-based architectures Structure the system architecture into components, as
discussed earlier in this chapter.

4. Visually model software Use graphical UML models to present static and dynamic views of
the software.

5. Verify software quality Ensure that the software meets the organizational quality standards.

KEY POINTS
_ Software processes are the activities involved in producing a software system. Software process
models are abstract representations of these processes.
_ General process models describe the organization of software processes. Examples of these general
models include the waterfall model, incremental development, and reuse-oriented development.
_ Requirements engineering is the process of developing a software specification. Specifications are
intended to communicate the system needs of the customer to the system developers.
_ Design and implementation processes are concerned with transforming a requirements specification into
an executable software system. Systematic design methods may be used as part of this transformation.
_ Software validation is the process of checking that the system conforms to its specification and that it
meets the real needs of the users of the system.
_ Software evolution takes place when you change existing software systems to meet new requirements.
Changes are continuous and the software must evolve to remain useful.
_ Processes should include activities to cope with change. This may involve a prototyping phase that
helps avoid poor decisions on requirements and design. Processes may be structured for iterative
development and delivery so that changes may be made without disrupting the system as a whole.
_ The Rational Unified Process is a modern generic process model that is organized into phases

(inception, elaboration, construction, and transition) but separates activities (requirements, analysis, and
design, etc.) from these phases.

E XERCISES
2.1. Giving reasons for your answer based on the type of system being developed, suggest the
most appropriate generic software process model that might be used as a basis for managing
the development of the following systems:
A system to control anti-lock braking in a car
A virtual reality system to support software maintenance
A university accounting system that replaces an existing system
An interactive travel planning system that helps users plan journeys with the lowest
environmental impact
2.2. Explain why incremental development is the most effective approach for developing business
software systems. Why is this model less appropriate for real-time systems engineering?
2.3. Consider the reuse-based process model shown in Figure 2.3. Explain why it is essential to
have two separate requirements engineering activities in the process.
2.4. Suggest why it is important to make a distinction between developing the user
requirements and developing system requirements in the requirements engineering
process.
2.5. Describe the main activities in the software design process and the outputs of these
activities. Using a diagram, show possible relationships between the outputs of these
activities.
2.6. Explain why change is inevitable in complex systems and give examples (apart from
prototyping and incremental delivery) of software process activities that help predict changes
and make the software being developed more resilient to change.
. 2.7. Explain why systems developed as prototypes should not normally be used as production
systems.
2.8. Explain why Boehm’s spiral model is an adaptable model that can support both change
avoidance and change tolerance activities. In practice, this model has not been widely used.
Suggest why this might be the case.
2.9. What are the advantages of providing static and dynamic views of the software process as in
the Rational Unified Process?
2.10. Historically, the introduction of technology has caused profound changes in the labor market and,
temporarily at least, displaced people from jobs. Discuss whether the introduction of extensive

14

process automation is likely to have the same consequences for software engineers. If you don’t
think it will, explain why not. If you think that it will reduce job opportunities, is it ethical for the
engineers affected to passively or actively resist the introduction of this technology?

.

