
1

4. Requirements engineering
Objectives

4.1 Functional and non-functional requirements
4.2 The software requirements document
4.3 Requirements specification
4.4 Requirements engineering processes
4.5 Requirements elicitation and analysis
4.6 Requirements validation
4.7 Requirements management

4.1 Cerințe funcționale și nefuncționale
4.2 Documentul de cerințe software
4.3 Specificația cerințelor
4.4 Procese de inginerie a cerințelor
4.5 Eliberarea și analiza cerințelor
4.6 Validarea cerințelor
4.7 Managementul cerințelor

The requirements for a system are the descriptions of what the system should do—the

services that it provides and the constraints on its operation. These requirements reflect the
 needs of customers for a system that serves a certain purpose such as controlling a device, placing an
order, or finding information. The process of finding out, analyzing, documenting and checking these
services and constraints is called

requirements engineering (RE).

The term ‘requirement’ is not used consistently in the software industry. In some
cases, a requirement is simply a high-level, abstract statement of a service that a system
should provide or a constraint on a system. At the other extreme, it is a detailed,
formal definition of a system function. Davis (1993) explains why these differences
exist:

If a company wishes to let a contract for a large software development project,

it must define its needs in
1. a sufficiently abstract way that a solution is not predefined.

The requirements must be written so that several contractors can bid
for the contract, offering, perhaps, different ways of meeting the client organization’s
needs.

2

Once a contract has been awarded, the contractor

2. must write a system definition for the client in more detail so that the client

understands and can validate what the software will do.

 Both of these documents may be called the requirements document for the system.

Some of the problems that arise during the requirements engineering process are
a result of failing to make a clear separation between these different levels of
description

a) ‘user requirements’ to
mean the high-level abstract requirements and

b) ‘system requirements’ to mean the
detailed description of what the system should do. User requirements and system
requirements may be defined as follows:

1. User requirements are statements, in a natural language plus diagrams, of what
services the system is expected to provide to system users and the constraints
under which it must operate.
2. System requirements are more detailed descriptions of the software system’s
functions, services, and operational constraints. The system requirements document
(sometimes called a functional specification) should define exactly what is
to be implemented. It may be part of the contract between the system buyer and
the software developers.

Different levels of requirements are useful because they communicate information
about the system to different types of reader. Figure 4.1 illustrates the distinction
between user and system requirements. This example from a mental health care
patient management system (MHC-PMS) shows how a user requirement may be
expanded into several system requirements. You can see from Figure 4.1 that the
user requirement is quite general. The system requirements provide more specific
information about the services and functions of the system that is to be implemented.

3

4.1 Functional and non-functional requirements
Software system requirements are often classified as functional requirements or nonfunctional
requirements:
1. Functional requirements These are statements of services the system should

provide, how the system should react to particular inputs, and how the system

should behave in particular situations. In some cases, the functional requirements

may also explicitly state what the system should not do.

2. Non-functional requirements These are constraints on the services or functions

offered by the system. They include timing constraints, constraints on the development
process, and constraints imposed by standards. Non-functional requirements

often apply to the system as a whole, rather than individual system
features or services.

4.1.1 Functional requirements
The functional requirements for a system describe what the system should do. These
requirements depend on the type of software being developed, the expected users of
the software, and the general approach taken by the organization when writing
requirements. When expressed as user requirements, functional requirements are
usually described in an abstract way that can be understood by system users.
However, more specific functional system requirements describe the system functions,
its inputs and outputs, exceptions, etc., in detail.
Functional system requirements vary from general requirements covering what
the system should do to very specific requirements reflecting local ways of working
or an organization’s existing systems. For example, here are examples of functional

requirements for the MHC-PMS system, used to maintain information about patients
receiving treatment for mental health problems:
1. A user shall be able to search the appointments lists for all clinics.
2. The system shall generate each day, for each clinic, a list of patients who are

4

expected to attend appointments that day.
3. Each staff member using the system shall be uniquely identified by his or her
eight-digit employee number.
These functional user requirements

4.1.2 Non-functional requirements
Non-functional requirements, as the name suggests, are requirements that are not
directly concerned with the specific services delivered by the system to its users.
They may relate to emergent system properties such as reliability, response time, and
store occupancy. Alternatively, they may define constraints on the system implementation
such as the capabilities of I/O devices or the data representations used in interfaces
with other systems.

1. Non-functional requirements may affect the overall architecture of a system
rather than the individual components. For example, to ensure that performance
requirements are met, you may have to organize the system to minimize communications
between components.
2. A single non-functional requirement, such as a security requirement, may generate
a number of related functional requirements that define new system services that
are required. In addition, it may also generate requirements that restrict existing
requirements.
Non-functional requirements arise through user needs, because of budget constraints,
organizational policies, the need for interoperability with other software

Figure 4.3 Types of non-functional requirement

The system should be easy to use by medical staff and should be organized in
such a way that user errors are minimized.

5

I have rewritten this to show how the goal could be expressed as a ‘testable’ nonfunctional
requirement. It is impossible to objectively verify the system goal, but in
the description below you can at least include software instrumentation to count the
errors made by users when they are testing the system.
Medical staff shall be able to use all the system functions after four hours of
training. After this training, the average number of errors made by experienced
users shall not exceed two per hour of system use.
Whenever possible, you should write non-functional requirements quantitatively
so that they can be objectively tested.

 Figure 4.5 shows metrics that you can use to specify non-functional system properties. You

can measure these characteristics

Figure 4.5 Metrics for specifying non-functional requirements

Requirements document standards
A number of large organizations, such as the U.S. Department of Defense and the IEEE, have defined standards
for requirements documents. These are usually very generic but are nevertheless useful as a basis for
developing more detailed organizational standards. The U.S. Institute of Electrical and Electronic Engineers
(IEEE) is one of the best-known standards providers and they have developed a standard for the structure of
requirements documents. This standard is most appropriate for systems such as military command and control
systems that have a long lifetime and are usually developed by a group of organizations.
http://www.SoftwareEngineering-9.com/Web/Requirements/IEEE-standard.html

4.2 The software requirements document
The software requirements document (sometimes called the software requirements
specification or SRS) is an official statement of what the system developers should

implement. It should include both the user requirements for a system and a detailed
specification of the system requirements. Sometimes, the user and system requirements
are integrated into a single description. In other cases, the user requirements
are defined in an introduction to the system requirements specification.

http://www.softwareengineering-9.com/Web/Requirements/IEEE-standard.html

6

 If there are a large number of requirements, the detailed system requirements may be

presented in a separate document.

Figure 4.7 shows one possible organization for a requirements document that is
based on an IEEE standard for requirements documents (IEEE, 1998). This standard
is a generic standard that can be adapted to specific uses. In this case, I have
extended the standard to include information about predicted system evolution. This
information helps the maintainers of the system and allows designers to include support
for future system features.
Naturally, the information that is included in a requirements document depends
on the type of software being developed and the approach to development that is to
be used. If an evolutionary approach is adopted for a software product (say), the

7

Figure 4.7 The structure of a requirements document

4.3 Requirements specification
Requirements specification is :

1. the process of writing down the user
2. and system requirements in a requirements document.

 Ideally, the user and system requirements
should be clear, unambiguous, easy to understand, complete, and consistent. In practice,
this is difficult to achieve as stakeholders interpret the requirements in different

8

ways and there are often inherent conflicts and inconsistencies in the requirements.
The user requirements for a system should describe the functional and nonfunctional
requirements so that they are understandable by system users who don’t have
detailed technical knowledge. Ideally, they should specify only the external behavior of
the system. The requirements document should not include details of the system architecture
or design. Consequently, if you are writing user requirements, you should not
use software jargon, structured notations, or formal notations. You should write user
requirements in natural language, with simple tables, forms, and intuitive diagrams.
System requirements are expanded versions of the user requirements that are used
by software engineers as the starting point for the system design. They add detail and
explain how the user requirements should be provided by the system. They may be
used as part of the contract for the implementation of the system and should therefore
be a complete and detailed specification of the whole system.
Ideally, the system requirements should simply describe the external behavior
of the system and its operational constraints. They should not be concerned with how
the system should be designed or implemented. However, at the level of detail
required to completely specify a complex software system, it is practically impossible
to exclude all design information. There are several reasons for this:
1. You may have to design an initial architecture of the system to help structure the
requirements specification. The system requirements are organized according to
the different sub-systems that make up the system. As I discuss in Chapters 6
and 18, this architectural definition is essential if you want to reuse software
components when implementing the system.
2. In most cases, systems must interoperate with existing systems, which constrain
the design and impose requirements on the new system.
3. The use of a specific architecture to satisfy non-functional requirements (such
as N-version programming to achieve reliability, discussed in Chapter 13) may
be necessary. An external regulator who needs to certify that the system is safe
may specify that an already certified architectural design be used.

Figure 4.8 Ways of writing a system requirements specification

9

Figure 4.9 Example requirements for the insulin pump software
system

4.4 Requirements engineering processes
As I discussed in Chapter 2, requirements engineering processes may include four
high-level activities. These focus on assessing if the system is useful to the business
(feasibility study), discovering requirements (elicitation and analysis), converting
these requirements into some standard form (specification), and checking that the
requirements actually define the system that the customer wants (validation). I have
shown these as sequential processes in Figure 2.6. However, in practice, requirements
engineering is an iterative process in which the activities are interleaved.
Figure 4.12 shows this interleaving. The activities are organized as an iterative
process around a spiral, with the output being a system requirements document.
The amount of time and effort devoted to each activity in each iteration depends on
the stage of the overall process and the type of system being developed. Early in
the process, most effort will be spent on understanding high-level business and
non-functional requirements, and the user requirements for the system. Later in the
process, in the outer rings of the spiral, more effort will be devoted to eliciting and
understanding the detailed system requirements.
This spiral model accommodates approaches to development where the requirements
are developed to different levels of detail. The number of iterations around the
spiral can vary so the spiral can be exited after some or all of the user requirements
have been elicited. Agile development can be used instead of prototyping so that the
requirements and the system implementation are developed together.
Some people consider requirements engineering to be the process of applying a
structured analysis method, such as object-oriented analysis (Larman, 2002). This
involves analyzing the system and developing a set of graphical system models, such
as use case models, which then serve as a system specification. The set of models
describes the behavior of the system and is annotated with additional information
describing, for example, the system’s required performance or reliability.
Although structured methods have a role to play in the requirements engineering
process, there is much more to requirements engineering than is covered by these
methods. Requirements elicitation, in particular, is a human-centered activity and
people dislike the constraints imposed on it by rigid system models.

10

In virtually all systems, requirements change. The people involved develop a better
understanding of what they want the software to do; the organization buying the
system changes; modifications are made to the system’s hardware, software, and
organizational environment. The process of managing these changing requirements
is called requirements management, which I cover in Section 4.7.

4.5 Requirements elicitation and analysis
After an initial feasibility study, the next stage of the requirements engineering
process is requirements elicitation and analysis. In this activity, software engineers
work with customers and system end-users to find out about the application domain,
what services the system should provide, the required performance of the system,
hardware constraints, and so on.

11

Requirements elicitation and analysis may involve a variety of different kinds of
people in an organization. A system stakeholder is anyone who should have some
direct or indirect influence on the system requirements. Stakeholders include endusers
who will interact with the system and anyone else in an organization who will
be affected by it. Other system stakeholders might be engineers who are developing
or maintaining other related systems, business managers, domain experts, and trade
union representatives.
A process model of the elicitation and analysis process is shown in Figure 4.13.
Each organization will have its own version or instantiation of this general model
depending on local factors such as the expertise of the staff, the type of system being
developed, the standards used, etc.
The process activities are:

1. Requirements discovery This is the process of interacting with stakeholders of the

system to discover their requirements. Domain requirements from stakeholders and
documentation are also discovered during this activity. There are several complementary
techniques that can be used for requirements discovery, which I discuss
later in this section.

2. Requirements classification and organization This activity takes the unstructured

collection of requirements, groups related requirements, and organizes
them into coherent clusters. The most common way of grouping requirements is
to use a model of the system architecture to identify sub-systems and to associate
requirements with each sub-system. In practice, requirements engineering
and architectural design cannot be completely separate activities.
3. Requirements prioritization and negotiation Inevitably, when multiple stakeholders
are involved, requirements will conflict. This activity is concerned with
prioritizing requirements and finding and resolving requirements conflicts
through negotiation. Usually, stakeholders have to meet to resolve differences
and agree on compromise requirements.
4. Requirements specification The requirements are documented and input into the
next round of the spiral. Formal or informal requirements documents may be
produced, as discussed in Section 4.3.

Figure 4.13 shows that requirements elicitation and analysis is an iterative

12

process with continual feedback from each activity to other activities. The process
cycle starts with requirements discovery and ends with the requirements documentation.
The analyst’s understanding of the requirements improves with each round of
the cycle. The cycle ends when the requirements document is complete.
Eliciting and understanding requirements from system stakeholders is a difficult
process for several reasons:
1. Stakeholders often don’t know what they want from a computer system except
in the most general terms; they may find it difficult to articulate what they want
the system to do; they may make unrealistic demands because they don’t know
what is and isn’t feasible.
2. Stakeholders in a system naturally express requirements in their own terms and
with implicit knowledge of their own work. Requirements engineers, without
experience in the customer’s domain, may not understand these requirements.
3. Different stakeholders have different requirements and they may express these
in different ways. Requirements engineers have to discover all potential sources
of requirements and discover commonalities and conflict.
4. Political factors may influence the requirements of a system. Managers may
demand specific system requirements because these will allow them to increase
their influence in the organization.
5. The economic and business environment in which the analysis takes place is
dynamic. It inevitably changes during the analysis process. The importance of
particular requirements may change. New requirements may emerge from new
stakeholders who were not originally consulted.
Inevitably, different stakeholders have different views on the importance and priority
of requirements and, sometimes, these views are conflicting. During the
process, you should organize regular stakeholder negotiations so that compromises
can be reached. It is impossible to completely satisfy every stakeholder but if some
stakeholders feel that their views have not been properly considered then they may
deliberately attempt to undermine the RE process.
At the requirements specification stage, the requirements that have been elicited
so far are documented in such a way that they can be used to help with requirements
discovery. At this stage, an early version of the system requirements document may
be produced with missing sections and incomplete requirements. Alternatively, the
requirements may be documented in a completely different way (e.g., in a spreadsheet
or on cards). Writing requirements on cards can be very effective as these are
easy for stakeholders to handle, change, and organize.

13

Viewpoints
A viewpoint is way of collecting and organizing a set of requirements from a group of stakeholders who have
something in common. Each viewpoint therefore includes a set of system requirements. Viewpoints might come
from end-users, managers, etc. They help identify the people who can provide information about their
requirements and structure the requirements for analysis.
http://www.SoftwareEngineering-9.com/Web/Requirements/Viewpoints.html

4.6 Requirements validation
Requirements validation is the process of checking that requirements actually define
the system that the customer really wants. It overlaps with analysis as it is concerned
with finding problems with the requirements. Requirements validation is important
because errors in a requirements document can lead to extensive rework costs when
these problems are discovered during development or after the system is in service.
The cost of fixing a requirements problem by making a system change is usually
much greater than repairing design or coding errors. The reason for this is that a
change to the requirements usually means that the system design and implementation
must also be changed. Furthermore the system must then be re-tested.

During the requirements validation process, different types of checks should be

carried out on the requirements in the requirements document. These checks include:
1. Validity checks A user may think that a system is needed to perform certain functions.
However, further thought and analysis may identify additional or different
functions that are required. Systems have diverse stakeholders with different
needs and any set of requirements is inevitably a compromise across the stakeholder
community.

2. Consistency checks Requirements in the document should not conflict. That is,

there should not be contradictory constraints or different descriptions of the
same system function.
3. Completeness checks The requirements document should include requirements
that define all functions and the constraints intended by the system user.
4. Realism checks Using knowledge of existing technology, the requirements
should be checked to ensure that they can actually be implemented. These checks
should also take account of the budget and schedule for the system development.
5. Verifiability To reduce the potential for dispute between customer and contractor,
system requirements should always be written so that they are verifiable.
This means that you should be able to write a set of tests that can demonstrate
that the delivered system meets each specified requirement.

4.7 Requirements management
The requirements for large software systems are always changing. One reason for this is
that these systems are usually developed to address ‘wicked’ problems—problems that
cannot be completely defined. Because the problem cannot be fully defined, the software
requirements are bound to be incomplete. During the software process, the stakeholders’
understanding of the problem is constantly changing (Figure 4.17). The system
requirements must then also evolve to reflect this changed problem view.

4.7.1 Requirements management planning
Planning is an essential first stage in the requirements management process. The
planning stage establishes the level of requirements management detail that is
required. During the requirements management stage, you have to decide on:
1. Requirements identification Each requirement must be uniquely identified so
that it can be cross-referenced with other requirements and used in traceability
assessments.

http://www.softwareengineering-9.com/Web/Requirements/Viewpoints.html

14

2. A change management process This is the set of activities that assess the impact
and cost of changes..
3. Traceability policies These policies define the relationships between each requirement
and between the requirements and the system design that should be recorded.
The traceability policy should also define how these records should be maintained.
4. Tool support Requirements management involves the processing of large amounts
of information about the requirements. Tools that may be used range from specialist
requirements management systems to spreadsheets and simple database systems.

Requirements management needs automated support and the software tools for
this should be chosen during the planning phase. You need tool support for:

1. Requirements storage The requirements should be maintained in a secure, managed
data store that is accessible to everyone involved in the requirements engineering
process.
2. Change management The process of change management (Figure 4.18) is simplified
if active tool support is available.
3. Traceability management As discussed above, tool support for traceability
allows related requirements to be discovered. Some tools are available which
use natural language processing techniques to help discover possible relationships
between requirements.
For small systems, it may not be necessary to use specialized requirements management
tools. The requirements management process may be supported using the
facilities available in word processors, spreadsheets, and PC databases. However,
for larger systems, more specialized tool support is required. I have included links
to information about requirements management tools in the book’s web pages.

4.7.2 Requirements change management
Requirements change management (Figure 4.18) should be applied to all proposed
changes to a system’s requirements after the requirements document has been approved.
Change management is essential because you need to decide if the benefits of implementing new
requirements are justified by the costs of implementation.

The advantage of using a formal process for change management is that all change proposals are treated
consistently and changes to the requirements document are made in a controlled way.

There are three principal stages to a change management process:
1. Problem analysis and change specification The process starts with an identified
requirements problem or, sometimes, with a specific change proposal. During
this stage, the problem or the change proposal is analyzed to check that it is
valid. This analysis is fed back to the change requestor who may respond with a
more specific requirements change proposal, or decide to withdraw the request.
2. Change analysis and costing The effect of the proposed change is assessed
using traceability information and general knowledge of the system requirements.
The cost of making the change is estimated both in terms of modifications
to the requirements document and, if appropriate, to the system design and
implementation. Once this analysis is completed, a decision is made whether or
not to proceed with the requirements change.
3. Change implementation The requirements document and, where necessary, the
system design and implementation, are modified. You should organize the
requirements document so that you can make changes to it without extensive
rewriting or reorganization. As with programs, changeability in documents is
achieved by minimizing external references and making the document sections

15

as modular as possible. Thus, individual sections can be changed and replaced
without affecting other parts of the document.
If a new requirement has to be urgently implemented, there is always a temptation to
change the system and then retrospectively modify the requirements document. You
should try to avoid this as it almost inevitably leads to the requirements specification and
the system implementation getting out of step. Once system changes have been made, it
is easy to forget to include these changes in the requirements document or to add information
to the requirements document that is inconsistent with the implementation.
Agile development processes, such as extreme programming, have been designed
to cope with requirements that change during the development process. In these
processes, when a user proposes a requirements change, this change does not go
through a formal change management process. Rather, the user has to prioritize that
change and, if it is high priority, decide what system features that were planned for the
next iteration should be dropped.

KEY POINTS
Requirements for a software system set out what the system should do and
define constraintson its operation and implementation.
Functional requirements are statements of the services that the system must
provide or are descriptions of how some computations must be carried out.
Non-functional requirements often constrain the system being developed and
the development process being used. These might be product requirements,
organizational requirements, or external requirements. They often relate to the
emergent properties of the system and therefore apply to the system as a whole.
The software requirements document is an agreed statement of the system
requirements. It should be organized so that both system customers and
software developers can use it.
The requirements engineering process includes a feasibility study,
requirements elicitation and analysis, requirements specification, requirements
validation, and requirements management.
Requirements elicitation and analysis is an iterative process that can be
represented as a spiral of activities—requirements discovery, requirements
classification and organization, requirements negotiation, and requirements
documentation.
Requirements validation is the process of checking the requirements for
validity, consistency,completeness, realism, and verifiability.
Business, organizational, and technical changes inevitably lead to changes to
the requirements for a software system. Requirements management is the
process of managing and controlling these changes.

