Гамильтоновы пути.

Гамильтоновы пути в ориентированных циклических графах.

Задание 1: В графе G = (X, U), изображенном на рисунке 1, определите гамильтоновы пути.

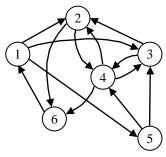


Рис. 1

Решение:

Заданный граф является ориентированным и содержит циклы. Применяем *алгоритм Кауфмана*, который позволяет определить простые пути любой длины в орграфе (циклическом или ациклическом), в частности и гамильтоновы пути (если они существуют):

I. Для заданного графа G = (X, U) составляем латинскую матрицу L следующим образом: в i-й строке и j-м столбце записываем элемент ij, если дуга $(x_i, x_j) \in U$ и 0 — в противном случае (рис. 2):

$$L =$$

1	2	3	4	5	6	
0	12	13	0	15	0	1
0	0	0	24	0	26	2
0	32	0	34	0	0	3
0	42	43	0	0	46	4
0	0	53	54	0	0	5
61	0	0	0	0	0	6

Рис. 2

II. Для каждого элемента $ij \in L$ удаляем i-й элемент, и в результате получаем модифицированную матрицу L^* (рис. 3):

$$L^* =$$

1	2	3	4	5	6	
0	2	3	0	5	0	1
0	0	0	4	0	6	2
0	2	0	4	0	0	3
0	2	3	0	0	6	4
0	0	3	4	0	0	5
1	0	0	0	0	0	6

Рис. 3

- III. Осуществляем латинское умножение (l.) матриц L и L^* . В результате умножения получаем матрицу L^2 , элементы которой получены по обычному правилу умножения 2-х матриц, к которому добавляются следующие правила:
- 1) элементы матрицы L^2 равны 0, если хотя бы один из элементов матриц L и L^* равен 0 или если невозможно составить последовательность из различных цифр;
- 2) элементами матрицы L^2 являются все последовательности, состоящие из различных цифр, полученные при умножении матриц L и L^* : $L^2 = L(l.)L^*$ (рис. 4):

1	2	3	4	5	6	
0	132	153	124,134,154	0	126	1
261	0	243	0	0	246	2
0	342	0	324	0	326,346	3
461	432	0	0	0	426	4
0	532,542	543	534	0	546	5
0	612	613	0	615	0	6

Рис.4

Элементы матрицы L^2 представляют собой простые пути длины 2.

IV.
$$L^3 = L^2(l.)L^*$$
 (puc. 5):

1	2	3	4	5	6	
0	1532	1243	1324	0	1326,1246	1
	1342	1543	1534		1346,1546	
	1542					
2461	0	2613	0	2615	0	2
3261	0	0	0	0	3426	3
3461					3246	
4261	4612	4613	0	4615	4326	4
5461	5432	0	5324	0	5326	5
	5342				5426	
					5346	
0	6132	6153	6124	0	0	6
			6134			
			6154			

Рис.5

Элементы матрицы L^3 представляют собой простые пути длины 3. V. $L^4 = L^3(l.)L^*$ (рис. 6):

V.
$$L^4 = L^3(l.)L^*$$
 (рис. 6):

1	2	3	4	5	6	
0	15432	0	15324	0	15326,13426	1
	15342				15426,13246	
					15346	
0	0	24613	26134	24615	0	2
		26153	26154			
34261	34612	0	0	32615	0	3
32461				34615		
43261	46132	42613	0	42615	0	4
		46153				
53261	54612	54613	0	0	54326	5
54261					53426	
53461					53246	
0	61532	61243	61324	0	0	6
	61342	61543	61534			
	61542					

Рис. 6

Элементы матрицы L^4 представляют собой простые пути длины 4.

VI.
$$L^5 = L^4(l.)L^*$$
 (рис. 7):

1	2	3	4	5	6	
0	0	0	0	0	154326	1
					153426	
					153246	
0	0	261543	261534	0	0	2
		246153				
0	0	0	326154	342615	0	3
				324615		
0	461532	426153	0	432615	0	4
543261	534612	542613	0	0	0	5
534261	546132					
532461						
0	615432	0	615324	0	0	6
	615342					

Рис.7

Элементы матрицы L^5 представляют собой простые пути длины 5 и для заданного графа эти пути являются гамильтоновыми путями.