
Instruction Types

Data transfer instructions

General-purpose data transfer

MOV dst,src (dst)(src)

Copies the second operand to the

first operand.

XCHG dst,src (dst)(src)

Exchange bytes or exchange words.

Data transfer with stack

PUSH src Copy specified word to top of stack.

POP dst Copy word from top of stack to specific
location.

Flag transfer

PUSHF Copy flag register to top of stack.

POPF Copy word at top of stack to flag register

LAHF Load AH with the low byte of the flag
register. No operands

SAHF Store AH register into low 8 bits of Flags
register. No operands

Address transfer

LEA reg,src Load effective address of
operand in specified register.

Lea SI, X

LDS reg, src Load DS register and other
specified register from memory.

LDS SI, Y ,

where Y is dd- double word

LES reg,src Load ES register and other
specified register from memory.

I/O port transfer

IN ac, port ; Copy a byte or word

from specified port to accumulator

(AX or AL).

IN ac, DX

OUT port, ac; Copy a byte or word

from accumulator to specified port.

OUT DX, ac

Arithmetic instructions

Arithmetic operations are executed on integer numbers in 4 formats:

• unsigned binary (byte or word) 5h - 0000 0101

• signed binary (byte or word), -5h or 0FAh 1111 1011

• packed decimal (the string of decimal digits are stored in consecutive 4-bit

groups : 3251- 0011 0010 0101 0001)

• unpacked decimal (each digit is stored in low 4-bit part of the byte: 3251 -

****0011 ****0010 ****0101 ****0001)

• All arithmetic instructions influence flags that can be checked with

conditional transfer instructions.

• Arithmetic operations can use all addressing modes but one operand

should be a register.

ADD dst, src, dst(dst)+(scr). Src can be also immediate value of 8

or 16 bits

ADC dst,src, dst(dst) + (src)+CF.

SUB dst, src dst(dst)-(src). Subtract byte from byte or word from

word.

SBB dst, src dst (dst)-(src)-CF It is used in multiple precision

operations

INC opr opr(opr)+1 do not change CF.

DEC opr opr(opr)-1

NEG opr opr-(opr). Negate – invert each bit of a specified byte or

word and add 1 (form 2’s complement).

Ex:

Mov ax, 10H AX= 0010

Neg ax AX=FFF0

CMP opr1, opr2 opr1-opr2. Compare two specified bytes or two specified
words and do not keep the result, just for flags (OF, SF, ZF, AF, PF, CF according
to result). It is used with conditional jump instructions.

Ex:

MOV AL, 5

MOV BL, 5

CMP AL, BL ; AL = 5, ZF = 1 (so equal!)

JE L1 (JNE L1)

CBW (no opr) (for signed binary) converts byte to word.

If the high digit in AL is 0 then all AH bits are 0, if high bit in AL is 1 then all AH
bits are 1.

CWD (no opr) convert word to double word. Works with AX and DX (high word).

Multiplication Instructions

MUL Multiply unsigned byte by byte or unsigned word by
word. The product is a word or double word. Cannot use
immediate operands.

MUL src . (AX) (AL)*(src) for bytes CF and OF =1 if
the high byte is not 0.

MUL src (DX:AX) (AX)*(src) for words.

IMUL src Multiply signed byte by byte or signed word by
word CF and OF =1 if the high byte is not the extension of
sign

EX. (AL)=B4 1011 0100cc (11001100)cd -76 (signed)
or 180(unsigned) (BL)=11h(17 decimal)

IMUL will form FAF4=-129210 CF=OF=1

MUL will form 0BF4=306010 CF=OF=1

Division Instructions

Division Instructions cannot use immediate operands. After
division the quotient and the remainder are obtained. In case of
overflow the division is interrupted. CF does not show this.

DIV Divide unsigned word by byte or unsigned double word
by word

DIV src divisor is a byte

• (AL))  quotient (AX)/(src)

• (AH)) remainder (AX)/(src)

• divisor is a word

• (AX))  quotient (DX:AX)/(src)

• (DX)) remainder (DX:AX)/(src)

IDIV src Divide signed word by byte or signed double word
by word It’s the same with DIV

• (AX)=0400 102410

• (BL)=B4 (-76 or 180)

• DIV BL quotient (AL)=05=510

remainder (AH)=7C=12410

• IDIV BL quotient (AL)=F3=-1310

remainder (AH)=24=3610

Example: Perform double precision addition

.model small

.stack 100h

.data

x dd 1111FFFFh

y dd 11115555h

z dw ?

.code

start: mov ax,@data ;DS initialisation

mov ds,ax

mov ax,X ; move in AX low word of X

add ax,Y ; add ax with low word of Y

mov Z,ax ; store the low word of the result

mov ax, [X+2] ; move in ax high word of X

adc ax,[Y+2] ; add with high word of Y and carry

mov [Z+2],ax ;store the high word of the result z=22235554

end start

Packed BCD arithmetic
DAA Decimal adjust After Addition.

DAS Decimal adjust After Subtraction

DAA

Corrects the result of addition of two packed BCD values.

Algorithm:

if low nibble of AL > 9 or AF = 1 then:

AL = AL + 6

AF = 1

if AL > 9Fh or CF = 1 then:

AL = AL + 60h

CF = 1

Example:

MOV AL, 0Fh ; AL = 0Fh (15)

DAA ; AL = 15h

RET

.

DAS

Corrects the result after subtraction of two packed BCD values.

Algorithm:
if low nibble of AL > 9 or AF = 1 then:

AL = AL - 6

AF = 1

if AL > 9Fh or CF = 1 then:

AL = AL - 60h

CF = 1

Example:

MOV AL, 0FFh ; AL = 0FFh (-1)

DAS ; AL = 99h, CF = 1

RET

Unpacked BCD arithmetic

AAA - ASCII (Unpacked) BCD correction
after addition

AAS - ASCII (Unpacked) BCD correction
after subtraction

AAM - ASCII adjust after multiplication

AAD - ASCII adjust before division

AAA - ASCII (Unpacked) BCD correction after addition

Corrects result in AH and AL after addition when working with
CBD values.

if low nibble of AL > 9 or AF = 1 then:

AL = AL + 6

AH = AH + 1

AF = 1

CF = 1

else

AF = 0

CF = 0

in both cases:
clear the high nibble of AL.

Example:

MOV AX, 12 ; AH = 00, AL = 0Ch

AAA ; AH = 01, AL = 02

RET

AAS - ASCII (Unpacked) BCD correction

after subtraction.

Corrects result in AH and AL after subtraction when working with BCD
values.
Algorithm: if low nibble of AL > 9 or AF = 1 then:

AL = AL - 6

AH = AH - 1

AF = 1

CF = 1

else

AF = 0

CF = 0

in both cases:
clear the high nibble of AL.

Example:

MOV AX, 02FFh ; AH = 02, AL = 0FFh

AAS ; AH = 01, AL = 09

RET

AAM - ASCII adjust after

multiplication

Corrects the result of multiplication of two BCD
values.
Algorithm:

AH = AL / 10

AL = remainder

Example:

MOV AL, 15 ; AL = 0Fh

AAM ; AH = 01, AL = 05

RET

AAD - ASCII adjust before division;

Prepares two BCD values for division.
Algorithm:

AL = (AH * 10) + AL

AH = 0

Example:

MOV AX, 0105h ; AH = 01, AL = 05

AAD ; AH = 00, AL = 0Fh (15)

RET

Perform addition of packed BCD numbers (4 decimal digits)

.model small

.stack 10h

.data

bcd1 db 56h, 32h

bcd2 db 67h, 49h

bcd3 db ?,?

.code

Start: mov ax,data

mov ds,ax

mov al,bcd1

add al,bcd2

daa

mov bcd3,al

mov al,[bcd1+1]

adc al,[bcd2+1]

daa

mov [bcd3+1],al

end start

Perform x/y, where x is a two digit number and x is one

digit number represented as unpacked BCD

.MODEL SMALL
.STACK 10h
.DATA
x DB 05h
y DB 03h,06h;63in unpacked bcd
q DB 2 DUP(?)
r DB ?
.CODE
start: mov ax,DATA

mov ds,ax
mov ah,0
mov al,y+1
aad

div x
mov q+1,al
mov al,y
aad
div x
mov q,al
mov r,ah
mov ax,4c00h
int 21h
END start

Program execution transfer instructions

These instructions are used to tell the

8086 to start fetching instructions from

some new address, rather than continuing

in sequence.

Unconditional transfer instructions

JMP operand , where operand can be a short, near, or
far address

• A jump operation reaches a short address by a one-byte
offset, limited to a distance of -128 to 127 bytes (the
same segment).

• A jump operation reaches near address by a one-word
offset, limited to a distance of

-32,768 to 32767 bytes within the same segment (the
same segment).

• A far address may be another segment and is reached
by a segment address and offset;

• Address specification:

• a) implicit

• b) using PTR directive:

• JMP SHORT PTR operand

• JMP NEAR PTR operand

• JMP FAR PTR operand

Conditional transfer instructions

• All instructions have the following format: opcode data8

• The first byte is the operation code and the second byte is the 8- bit
displacement to the next instruction in 2-s complement system. The
negative displacement means go back and positive disp. means go
forward. 8-bit displacement constraint the distance of jumping in
range of -128…127

Dist in dec D8 in hex Address of jumping

-128 80 (IP)-128

0 0 (IP)

127 7F (IP)+127

These instructions are often used after a compare instruction. The
terms B (below) and A (above) refer to unsigned binary numbers.
Above means larger in magnitude. The terms G (greater than) or L
(less than) refer to signed binary numbers. Greater than means
more positive.

• ; IF ((X > Y) AND (Z < T)) OR (A <> B) THEN C := D;

• ; Test the boolean expression:

• mov ax, A

• cmp ax, B

• jne DoIF

• mov ax, X

• cmp ax, Y

• jng EndOfIf

• mov ax, Z

• cmp ax, T

• jnl EndOfIf

• DoIf: mov ax, D

• mov C, ax

• ; End of IF statement

• EndOfIF:

mov al, 25 ; set al to 25.

mov bl, 10 ; set bl to 10.

cmp al, bl ; compare al - bl.

je equal ; jump if al = bl (zf = 1).

mov ah,6

mov dl, 'n'

int 21h

jmp stop ; so print 'n', and jump to stop.

equal: ; if gets here,

mov ah,6

mov dl, 'y'

int 21h

stop:

ret ; gets here no matter what.

Iteration control instructions

These instructions can be used to execute a
series of instructions some number of times.

• LOOP opr ;Loop through a sequence of
instructions until CX= 0

• LOOPE/LOOPZ opr ; Loop through a sequence
instructions while ZF= l and CX  0

• LOOPNE/LOOPNZ opr ;Loop through a
sequence instructions while ZF=0 and CX  0

• JCXZ ; Jump to specified address if CX=0

String instructions

A string is a series of bytes or a series

of words in sequential memory locations. A

string often consists of ASCII character

codes. A ”B” in a mnemonic is used to

specifically indicate that a string of bytes is to

be acted upon. A ”W” in the mnemonic is

used to indicate that a string of words is to be

acted upon.

Chain instructions

MOVS/ MOVSB/ MOVSW

• Copy byte /word from DS:[SI] to ES:[DI]. Update
SI and DI.

ES:[DI] = DS:[SI]

• if DF = 0 then
SI = SI + 1 (2)

DI = DI + 1 (2)

• else
SI = SI - 1 (2)

DI = DI - 1 (2)

COMPS/ COMPSB/ COMPSW

• Compare bytes/words: ES:[DI] and DS:[SI].

DS:[SI] - ES:[DI]

• set flags according to result:
OF, SF, ZF, AF, PF, CF

• if DF = 0 then
SI = SI + 1 (2)

DI = DI + 1 (2)

• else
SI = SI - 1 (2)

DI = DI - 1 (2)

SCAS/ SCASB/ SCASW

• Compare bytes/words: AL/AX and ES:[DI].
ES:[DI] – AL/AX

• set flags according to result:
OF, SF, ZF, AF, PF, CF

• if DF = 0 then

DI = DI + 1 (2)

• else

DI = DI - 1 (2)

LODS/ LODSB/ LODSW

• Load byte from DS:[SI] into AL or string

word into AX. Update SI.

AL/AX = DS:[SI]

• if DF = 0 then

SI = SI + 1 (2)

• else

SI = SI - 1 (2)

STOS/ STOSB/ STOSW

•

• Store byte from or word from AL/ AX into

ES:[DI]. Update DI.

ES:[DI] = AL/AX

• if DF = 0 then

DI = DI + 1(2)

• else

DI = DI - 1 (2)

REP chain instruction

• Repeat following chain instructions: MOVSB, MOVSW,
LODSB, LODSW, STOSB, STOSW instructions CX
times.
Algorithm:
check cx: if CX <> 0 then

• do following chain instruction

• CX = CX - 1

• go back to check_cx

• else

• exit from REP cycle

•

REPE/REPZ

• Repeat following CMPSB, CMPSW, SCASB, SCASW
instructions while ZF = 1 (result is Equal/Zero), maximum
CX times.
Algorithm:
check_cx: if CX <> 0 then

• do following chain instruction

• CX = CX - 1

• if ZF = 1 then:
– go back to check_cx

• else
– exit from REPE/REPZ cycle

• else

• exit from REPE/REPZ cycle

REPNE/REPNZ

• Repeat following CMPSB, CMPSW, SCASB, SCASW
instructions while ZF = 0 (result is Not Equal/Not Zero),
maximum CX times.
Algorithm:
check_cx: if CX <> 0 then

• do following chain instruction

• CX = CX - 1

• if ZF = 0 then:
– go back to check_cx

• else
– exit from REPNE/REPNZ cycle

• else

• exit from REPNE/REPNZ cycle

XLATB

• Translate byte from table.
Copy value of memory byte at DS:[BX + unsigned AL] to
AL register.
Algorithm:
AL = DS:[BX + unsigned AL]
Example:

• ORG 100h

• x DB 11h, 22h, 33h, 44h, 55h

• LEA BX, x

• MOV AL, 2

• XLATB ; AL = 33h

• RET

Example: Strings

• DATA SEGMENT

• a:

• x DB 0,1,2,3,4,5,6,7,8,9

• y DB 10 DUP(?)

• z DB 0,1,2,3,4,0,1,2,3,4

• size equ ($-a)/3

• DATA ENDS

• CODE SEGMENT

• ASSUME cs:CODE,ds:DATA,es:DATA

• start: mov ax,DATA

• mov ds,ax

• mov es,ax

• lea si,x ; offset of x in si

• lea di,y ; offset of y in di

•

• mov cx,size

• cld ;DF=0

• rep movsb ;move x to y (10 times)

• mov cx,size

• l: lodsb ; load x into AL while size=0

• loop l

• lea si,x ; offset of x in si

• lea di,z ; offset of z in di

• mov cx,size

• repe cmpsw ; compare x and z while ZF=1

• jnz n ; jump to interrupt that displays a character 'n'
; on the screen

•

• mov al,'y' ; else display 'y'

• mov ah,0Eh ; teletype output, in AL the
; character to write

• int 10h

• n: mov al,'n'

• mov ah,0Eh ; teletype output, in AL the
;character to write

• int 10h

• mov ah,0 ; wait for any key

• int 16h

• CODE ENDS

• END start

Example: Determine the ASCII code of the hex

digit using XLATB

• DATA SEGMENT

• asc_tbl DB '0123456789ABCDEF'

• DATA ENDS

• CODE SEGMENT

• ASSUME cs:CODE, ds:DATA

• start: mov ax,DATA

• mov ds,ax

• mov cx,10h ; counter=16

• xor al,al ; zeroes al

• mov bx,OFFSET asc_tbl ; bx= 0

• bucl: mov dh,al ; remember the address of the first element

• xlatb ; move in al the content of memory byte

• ; from [bx+al] -ASCII code of zero

•

• mov dl,al ; store the ASCII code for next interrupt

• mov ah,06h ; direct console input or output.

• ; parameters for output should be in DL = 0..254
(ascii code)

• int 21h ;

• mov al,dh ;restore the address of the previous element

• inc al ; go to next address

• loop bucl ; repeat 16 times

• mov ax,4c00h ;return control to the operating system
(stop program).

• int 21h

• CODE ENDS

• END start

Convert a 16-bit binary number to 4 hexadecimal digits and print them

to the screen.

• .model small

• .data

• n dw 9A3Ch

• hex db '0123456789ABCDEF' ;the table of hex digits

• .code

• start: mov ax, @data

• mov ds,ax

• lea bx,hex

• mov ah, 02h ; in AH - the code of "show character"

• mov cx,n

• mov al,ch

• and al,0F0h ; the high digit

• shr al,4

• xlatb ; translate the digit to a character

• mov dl,al

• int 21h ; show the character

•

• mov al,ch

• and al,0Fh

• xlatb

• mov dl,al

• int 21h

• mov al,cl

• and al,0F0h

• shr al,4

• xlatb

• mov dl,al

• int 21h

• mov al,cl

• and al,0fh

• xlatb

• mov dl,al

• int 21h

• mov ax,4c00h

• int 21h

• end start

PROCEDURES

• Organizing a program into procedures provides the
following benefits:

• Reduces the amount of code because a common
procedure can be called from any number of places in
the code segment.

• Encourages better program organization.

• Facilitates debug in of a program because defects can
be more clearly isolated.

• Helps in the ongoing maintenance of programs because
procedures are readily identified for modification.

• The basic mechanism for declaring a

procedure is:

• procname proc {NEAR or FAR}

• <statements>

• procname endp

The following “procedure” zeros out the 256 bytes

starting at the address in the bx register:

• ZeroBytes proc

• xor ax, ax

• mov cx, 128

• ZeroLoop: mov [bx], ax

• add bx, 2

• loop ZeroLoop

• ret

• ZeroBytes endp

CALL and RETn Operations

• The CALL instructions provides for the transfer

of control to a called procedure. The RET

returns control back to the calling procedure.

• CALL procedure-name

• CALL NEAR PTR procedure-name

• CALL FAR PTR procedure-name

• RETN [n]

• RETF [n]

• RET [n]

When a near procedure is called:

1. The IP is pushed onto the stack.

2. The IP is loaded with the address of the

called procedure.

3. Upon executing the return the IP is popped

off the stack.
CALL

(SP)  (SP) – 2

SS: ((SP) + 1:(SP))  (IP)

RET

(IP)  SS: ((SP) + 1:(SP))

(SP)  (SP) + 2

Near Call and Return

Far Call and Return

1. The CS and IP are pushed onto the stack.

2. The IP and CS of the procedure are placed in

the IP and CS registers.

3. Upon executing the return the IP and CS are

popped off the stack.
CALL

(SP)  (SP) – 2

SS: ((SP) + 1:(SP))  (CS)

(SP)  (SP) – 2

SS: ((SP) + 1:(SP))  (IP)

RET

(IP)  SS: ((SP) + 1:(SP))

(SP)  (SP) + 2

(CS)  SS: ((SP) + 1:(SP))

(SP)  (SP) + 2

