
Control Unit

Control Unit basics

The main function of a computer is to execute
programs.

The execution of a program consists of a
sequential execution of instructions.

Each instruction is executed during an
instruction cycle made up of shorter subcycles
(fetch, execute, interrupt). The performance of
each subcycle involves one or more shorter
operations, that is, micro-operations.

Micro-operations are functional or atomic
operations of a processor – a transfer between
registers, a transfer between registers and
external bus, a simple arithmetic or logic
operation (shift, add, negate).

The control unit is the main component that
directs the system operations by sending
control signals to the datapath.

These signals control the flow of data
within the CPU and between the CPU and
external units such as memory and I/O.

The control unit performs two basic tasks:
– Sequencing – the control unit causes the

processor to step through a series of micro-
operations in the proper sequence, based
on the program being executed

– Execution – The control unit causes each
micro-operation to be performed.

Inputs:
• Clock – One or several micro-operations are executed at

one clock pulse. It is called a processor cycle.
• Instruction register – The opcode of the current instruction

is used to determine which micro-operations to perform.
• Flags – Are needed to determine the status of the

processor and outcome of previous ALU operations.
• Control signals from Control Bus – interrupt signals,

acknowledgments.

Outputs:
• Control signals within the CPU – These are two types:

those that cause data to be moved from one register to
another and those that activates specific CPU functions.

• Control signals to Control Bus – also two types: control
signals to memory and control signals to I/O system.

Harwired Control Unit

In hardwired control, fixed logic circuits that
correspond directly to the Boolean expressions
are used to generate the control signals.

• Advantage: Hardwired control is very fast and CU
has a small size.

• Disadvantage: Hardwired control could be very
expensive and complicated for complex systems.
It will require a redesign of the entire systems in
the case of any change (ex. add a new
instruction).

To simplify the CU logic,

there should be a unique

logic input for each opcode.

This function is performed by

a decoder which takes an

encoded input and produces

a single output.

Timing generator
is a counter of a
clock pulses. At
the end of the
instruction cycle,
the CU must
reinitialize the
counter to T0.

Example: Assume that the instruction set of a machine has the three
instructions: x, y, and z; and A, B, C, D, E, F, G, and H are signals that should be
generated for the three instructions at the three steps T0 , T1 , and T2.

Microprogrammed Control Unit

The idea of microprogrammed control is to
store the control signals associated with the
implementation of a certain instruction as a
microprogram in a special memory called a
control memory (CM).

• Advantage: It is flexible and could adapt easily to
changes in the system design. We can easily add
new instructions without changing hardware.

• Disadvantage: It is slower than a hardwired
control unit of comparable technology.

Microprogramming is the dominant technique in
CISC processors, hardwired CU – in RISC
processors.

• A microprogram is written in a
microprogramming language and consists of a
sequence of microinstructions.

• A microinstruction is a vector of bits, where
each bit is a control signal, condition code and
the address of the next microinstruction.

Microinstructions can be classified as
horizontal or vertical.

Individual bits in horizontal microinstructions

correspond to individual control lines.

If the control bit is equal to 1 – the control

line is turned on, if the bit is equal to 0 – the

control line is leaved of.

If the condition code is false – the next

instruction in the sequence is executed. If the

condition is true – the address of the next

microinstruction to be executed is indicated in the

address field.

Horizontal microinstruction

Horizontal
microinstructions
are long and
allow maximum
parallelism since
each bit controls
a single control
line.

Vertical microinstruction

Control lines are coded into specific fields
within a microinstruction.
Decoders are needed to map a field of k
bits to 2k possible combinations of
control lines.

Because of the encoding, vertical
microinstructions are much shorter
than horizontal ones.

Control lines encoded in the same
field cannot be activated
simultaneously. Therefore,
vertical microinstructions allow only
limited parallelism.

Memory System
Memory hierarchy

The memory hierarchy can be characterized by a number of parameters:

1. Access type (sequencial, direct, random and
associative)

- Sequencial access. It is used in tape units. Memory is organized
into units of data, called records. Access must be done in a specific linear
sequence. Example: if access to location 100 takes 500 ns, and if a
consecutive access to location 101 takes 505 ns, then it is expected that an
access to location 300 may take 1500 ns. This is because the memory has
to cycle through locations 100 to 300, with each location requiring 5 ns.

- Direct access. It is used in disk units. Individual blocks have a
unique address based on physical location. Access is done by direct access
of a block and sequencial searching to reach the final location.

- Random access. It is used in main memory and some cache
systems. Each addressable location has a unique address. The time to
access a given location is constant.

- Associative access. It is used in some cache memories. It is a
random access type of memory in which a word is stored and retrieved
based on a portion of its content rather than its address. The access time
is also constant.

2. Capacity. Is typically expressed in terms of bytes or words

(1KB, 1MB, 1GB).

3. Access time (latency). The time it takes to perform a write
or read operation, it represents an interval between the
request for information and the access to the first bit of that
information.

4. Cycle time It consists of the access time plus any additional
time required before a second access can commence.

5. Bandwidth (Transfer rate). This is the rate at which data can
be transferred into or out a memory unit. It is egual to 1/cycle
time (words per second) or w/cycle time.

6. Cost (is usually specified in money per megabytes).

A variety of physical types of memory

have been employed. The most common today

are semiconductor memory, magnetic, used

for disk and tape, and optical and magneto-

optical.

According to physical characteristics

memory can be:

•Volatile – information is lost when electrical

power is switched off (RAM).

•Non-volatile – information once recorded

remains without deterioration until it is changed

(ROM).

Semiconductor memory types

The main memory of a computer system should be fast enough
to not degrade the performance of the system. To achieve this, the
semiconductor type memories are used as main memory.

• read-only memory -ROM non-volatile memory type
• read-write memory or random access memory - RAM volatile

ROM memory
• ROM. Its content can not be erasable.
• PROM (Programmable read only memory. Once programmed, they

can not be erased.
• EPROM (erasable programmable ROM). Erasable by ultraviolet lights.
• EEPROM (byte-level electrically erasable programmable ROM).
• Flash memory (block-level electrically erasable programmable ROM).

RAM memory

• static random access memory (SRAM)
• dynamic random access memory (DRAM)

In a SRAM binary values are stored using
traditional flip-flops (6 transistors configuration).

A DRAM is made with cells that store data as
charge on capacitors.

The use of dynamic memory leads to saving in chip
area. The presence or absence of charge on a capacitor
is interpreted as a binary 1 or 0. Because capacitors
have a natural tendence to discharge, DRAMs require
periodic charge refreshing by a special circuit.

SRAM and DRAM are both volatile: power
must be continuously supplied to the memory.

DRAM cell is smaller than SRAM cell. Thus,
a DRAM is denser and less expensive, but it
requires the supporting refresh circuitry.

Thus, DRAMs are used in large memory
requirements.

SRAMs are generally faster than DRAMs.
They are used and in cache memories.

The effectiveness of a memory hierarchy during a
program execution depends on the principle called locality
of reference.

According to this principle, the most frequently used
information is temporarily moved into the faster memory.

There exist two forms of locality: spatial and temporal
locality.

• Spatial locality refers to the phenomenon that when a
given address has been referenced, it is most likely that
addresses near it will be referenced within a short period of
time, for example, consecutive instructions in a straightline
program.

• Temporal locality, on the other hand, refers to the
phenomenon that once a particular memory item has been
referenced, it is most likely that it will be referenced next,
for example, an instruction in a program loop.

The sequence of events that takes place when
the processor makes a request for an

item is as follows.

First, the item is sought in the first memory
level of the memory hierarchy.

The probability of finding the requested item
in the first level is called the hit ratio.

The probability of not finding (missing) the
requested item in the first level of the memory
hierarchy is called the miss ratio.

When the requested item causes a “miss,” it
is sought in the next subsequent memory level.

Cache memory
Cache memory is a small high-speed memory, situated

between the processor and the main memory in which the
information expected to be used more frequently by the CPU
is kept (the term cache means a safe place for hiding or
storing things).

The structure of a cache-memory system

At any given time some active portion of the main
memory is duplicated in the cache.

Therefore, when the processor makes a request for a
memory reference, the request is first sought in the cache.

If the request corresponds to an element that is
currently residing in the cache, we call that a cache hit.

If the request corresponds to an element that is not
currently in the cache, we call that a cache miss.

After a cache miss, a block of elements is brought from
the main memory to cache.

Because of the phenomenon of locality of reference,
we can expect that the next requested element will be
residing in the neighboring locality of the current requested
element.

A request for accessing a memory element is made by the processor through issuing the
logic address of the requested element. It may correspond to that of an element that
exists currently in the cache (cache hit); otherwise, it may correspond to an element that
is currently residing in the main memory. Therefore, address translation has to be made
in order to determine where is the requested element. This is one of the functions
performed by the memory management unit (MMU).

The main memory consists of up to 2n addressable
words, with each word having a unique n-bit address.

For mapping purposes, this memory is considered
to consist of a number of fixed-lengh blocks of B words
each.

That is, there are M=2n/B blocks.

Cache consists of C lines of B words each and the
number of lines is considerably less than the number of
main memory blocks (C<<M).

Because there are more blocks than lines, an
individual line cannot be uniquely dedicated to a
particular block. Thus, each line includes a tag that
identifies which block is currently being stored. The tag
is usually a portion of the main memory address.

There are three main different organization
techniques used for cache memory.

1. Direct mapping

2. Associative Mapping

3. Set-Associative Mapping.

These techniques differ in two main aspects:
• - The criterion used to place, in the cache, an

incoming block from the main memory.
• - The criterion used to replace a cache block by

an incoming block (on cache full).

Direct mapping

Each block of main memory is mapped
into only one possible cache block.

Consider a main memory with M blocks
with B words in each.

If cache contains C lines, then memory is
organized as a two-dimensional array with C
lines and L columns. C*L=M. So, L memory
blocks from one line can be mapped in one
cache block.

Each main memory address is divided into
three fields:

The word field identifies a unique word within a block. It

contains b=log2 B bits. B is the number of words in a block.

The cache block field specifies one cache block (line). It

contains c= log2 C bits. C is the number of cache lines.

The tag field specifies one block in the main memory line. It

contains l = log2 L bits, L is the number of columns in main
memory. L=M/C
The total number of bits in the main memory address n=log2

(B*M). M is a number of total main memory blocks.

Consider the case of a main memory. consisting of M=4K=212 blocks, a

cache memory consisting of C=128=27 blocks, and a block size of B=16=24

words (bytes). The main memory size is 212*24=216=64KB.

The division of the main memory and the cache according to the direct-

mapped cache technique: Main memory array: 128 x 32.

Word field: b= log2 16 = 4 bits

Cache Block field c= log2 128 = 7 bits

Tag field l= log2 L= log2 (M/C) = log2 (212/27) = 5 bits

The total number of bits in the main memory address

n = log2 (M*B) = log2 (212 *24) =16 bits.

The direct mapping technique is simple and inexpensive to implement.
Disadvantage: a fixed cache location for any given block.

Associative Mapping

According to this technique, an incoming main memory
block can be placed in any available cache block.

Therefore, the address issued by the processor need only
have two fields. These are the Tag and Word fields.

The first uniquely identifies the block while residing in
the cache.

The second field identifies the element within the block
that is requested by the processor.

To determine whether a block is in the cache, the cache
control logic must examine every block’s tag in parallel.

No field in the address corresponds to cache block
number, so that the number of block in the cache is not
determined by the address format.

The length, in bits, of each of the fields:
1. Word field b= log2 B, where B is the size of the block in words.
2. Tag field m= log2 M, where M is the size of the main memory in
blocks.
3. The number of bits in the main memory address n= log2 (B * M)

Let’s compute these parameters for a memory system having the
following specification: size of the main memory is 4K blocks, size of
the cache is 128 blocks, and the block size is 16 words.
Word field b= log2 B = log2 16= log2 24 = 4 bits
Tag field m = log2 M = log2 4K= log2 212 = 12 bits
The number of bits in the main memory address

n=log2(B * M)=log2(24 * 212) = 16 bits.

The main advantage of the associative-
mapping technique is the efficient use of the
cache.

The main disadvantage of the technique,
however, is the hardware overhead required
to perform the associative (parallel) search
conducted in order to find a match between
the tag field and the tag memory.

Set-Associative Mapping

A set-associative mapping is a compromise
between direct and associative mapping.

According to set-associative mapping
technique, the cache is divided into a number
of sets.

An incoming block maps to any block in
the assigned cache set.

Therefore, the address issued by the
processor is divided into three distinct fields.
These are the Tag, Set, and Word fields.

The length, in bits, of each of the fields is given by:

1. Word field b= log2 B, where B is the size of the

block in words.

2. Set field s= log2 S, where S is the number of sets

in the cache.

3. Tag field m= log2 (M/S), where M is the size of the

main memory in blocks.

S = C/Bs, where C is the number of cache blocks

and Bs is the number of blocks per set.

4. The number of bits in the main memory address n

= log2 (B * M).

Example. Compute the above three parameters
(Word, Set, and Tag) for a memory system having the
following specification: size of the main memory M is 4K
blocks, size of the cache C is 128 blocks, and the block
size B is 16 words. One cache set Bs has four blocks.

Word field b= log2 B = log2 16= log2 24 = 4 bits

Set field s=log2 (128/4) = log2 32 = 5

Tag field m = log2 (M/S) = log2 210/32= log2 27= 7 bits

The number of bits in the main memory address
n=log2(B * M)=log2(24 * 212) = 16 bits.

The protocol used by the MMU to satisfy a request made by

the processor for accessing a given element.

1. Use the Set field (5 bits) to determine (directly) the

specified set (1 of the 32 sets).

2. Use the Tag field to find a match with any of the (four)

blocks in the determined set. A match in the tag memory

indicates that the specified set determined in step 1 is currently

holding the targeted block, that is, a cache hit.

3. Among the 16 words (elements) contained in hit cache

block, the requested word is selected using a selector with the

help of the Word field.

4. If in step 2, no match is found, then this indicates a cache

miss. Therefore, the required block has to be brought from the

main memory.

Input–Output system

Peripheral devices can not be connected directly to the
system bus, only through I/O interface circuits – I/O module.

1. There are a wide variety of peripherals with various
methods of operation;

2. The data transfer rate is very different.

3. Peripherals often use different data formats and word lengths
than the computer to which they are attached.

Device The data transfer rate

keyboard 10 characters (bytes)/second

scanner 200,000 characters/second

laser printer 100,000 characters/second

graphic display 30,000,000 characters/second

The functions of an I/O module

1. Control and timing to coordinate the flow of traffic
between internal resources and external devices.

2. Communication between the processor and the
device. It involves commands decoding, status
information (common status signals are BUSY and
READY), address recognition and data exchange.

3. Data buffering. The transfer rate of the processor
and peripheral is different. So data are first stored in
special input and output registers (ports).

Block diagram of an I/O module

- The processor check the status of the device

- The I/O module returns the status of the device

- If the device is ready to transmit, the processor requests transfer of

data by means of a command to the I/O module

- The I/O module obtains a unit of data (8 or 16 bits) from the device

- The data are transferred from the I/O module to the processor.

There are two arrangements to address input and output registers.
1. Shared I/O. I/O devices are assigned particular addresses, isolated from
the address space assigned to the memory.
The main advantage of the shared I/O arrangement is the separation
between the memory address space and that of the I/O devices.
Its main disadvantage is the need to have special input and output
instructions in the processor instruction set.

The shared I/O arrangement is mostly adopted by Intel.
2. Memory-mapped I/O. Input and output registers are addressed as
memory locations.
The main advantage of the memory-mapped I/O is the use of the read and
write instructions of the processor to perform the input and output
operations, respectively. It eliminates the need for introducing special I/O
instructions.
The main disadvantage - is the need to reserve a certain part of the
memory address space for addressing I/O devices, that is, a reduction in
the available memory address space.
The memory-mapped I/O has been mostly adopted by Motorola.

I/O Handling in in Operating Systems (I/O techniques of data
transfer)

• programmed I/O (polling), in which I/O data
transfer occurs under the control of the CPU
program;

• interrupt driven I/O, in which I/O data transfer is
controlled by CPU after the external interrupt
request that initiates the transfer;

• direct memory access (DMA), in which a
specialized I/O controller takes over the control of
an I/O operation to move a large block of data.

Polling & interrupts work best with low-
bandwidth devices, DMA works best with high-
bandwidth devices (like hard disks)

Programmed I/O

I/O data transfer occurs under the control of the
CPU program.

The program must check the device status, send a
read or write command and transfer the data.

The processor must wait until the I/O operation is
complete. If the processor is faster then the I/O
module, this is wasteful of the processor time.

The process of checking the status of I/O devices
in order to determine their readiness for
receiving and/or sending characters, is called I/O
polling.

To execute an I/O instruction, the processor issues an
address, specifying the particular I/O module and
external device, and an I/O command.
There are four types of commands:
1. Control: Used to activate a peripheral and tell it
what to do.
2. Test: Used to test various status conditions
associated with an I/O module and its peripherals (if it
is powered on, if the I/O operation is completed, if any
errors occurred).
3. Read: Causes the I/O module to obtain the word of
data from the peripheral and place it in an internal
buffer – data register and then to the data bus;
4. Write: Causes the I/O module to take a word of data
from the data bus and transmit it to the peripheral.

Flowchart of reading in a block of data:

For each word that is read in, the

processor must remain in status

checking cycle until it determines

that the word is available in the I/O

module’s data register.

This flowchart highlights the main

disadvantage of this technique: it is

a time-consuming process.

Interrupt-driven I/O

The processor issues an I/O command,
continues to execute other instructions, and is
interrupted by the I/O module when the latter
is ready to exchange data with the processor.

I/O module actions.

For input, the I/O module receives a READ command from the

processor.

Then it proceeds to read data in from an associated peripheral.

Once the data are in the module’s data register, the module signals an

interrupt to the processor over a control line.

The module then waits until its data are requested by the processor.

When the request is made, the module places data on the data bus.

Processor’s actions.

The processor issues a READ command and then goes off and

executes other instructions.

At the end of each instruction cycle, the processor checks for interrupts.

When the interrupt occurs, the processor stores FLAGS register, current

IP and CS values into stack, disables further interrupts, fetches from the bus

one byte representing interrupt number, and jumps to Interrupt Service

Routine (ISR). In this case, it reads the word of data from the I/O module

and stores it in memory.

It then restores the content of the registers from stack and resumes

execution.

A flowchart of reading in a block of data:

Interrupt-driven I/O is more efficient than
programmed I/O because it eliminates
needless waiting. However, it still consumes a
lot of processor time, because every word of
data that goes from memory to I/O module or
vice-versa must pass through the processor.

Programmed I/O and interrupt-driven I/O

suffer from two drawbacks:

The I/O transfer rate is limited by the

speed with which the processor can test

and service a device.

The processor must execute a number of

instructions for each I/O transfer.

Direct memory access (DMA)

When large volumes of data are to be
moved, a more efficient technique is required:
direct memory access (DMA).

DMA involves an additional module on the
system bus, the DMA controller. It takes over
the control of the system from the processor.

Data register

Data count

Address register

Control logic

Data lines

DMA request

DMA acknowledge

Interrupt

Read

Write

When the processor wishes to

read or write a block of data, it issues a

command to the DMA controller, by

sending the following information:

. If read or write is requested (read

or write control lines).

. The address of the I/O device

(data lines).

. The starting location in memory

to read or write (it is stored in address

register)

. The number of words to be read

or written (send on data lines and

stored in the data count register).

When the transfer is complete, The

DMA controller sends an interrupt signal

to the processor. Thus, the processor is

involved only at the beginning and end

of the transfer.

Issue read block

command to I/O

module

Read status of

DMA controller

CPU -> DMA

DMA -> CPU

Do something

else

Interrupt

A flowchart of reading in a block of data:

1. DMA controller initiates

data transfer.

2. Data is moved (increasing

the address in memory, and

reducing the count of words to

be moved).

3. When word count reaches

zero, the DMA informs the CPU

of the termination by means of

an interrupt.

4. The CPU regains access

to the memory bus.

Direct memory access data transfer can be performed

in burst mode or single cycle mode.

In burst mode, the DMA controller keeps control of the

bus until all the data has been transferred to (from)

memory from (to) the peripheral device.

This mode of transfer is needed for fast devices where

data transfer cannot be stopped until the entire transfer is

done.

In single-cycle mode (cycle stealing), the DMA

controller relinquishes the bus after each transfer of one

data word.

This minimizes the amount of time that the DMA

controller keeps the CPU from controlling the bus, but it

requires that the bus request/acknowledge sequence be

performed for every single transfer. This overhead can

result in a degradation of the performance.

