
1. Computer components

Virtually, all contemporary computer designs
are based on concepts developed by John von
Neumann.

Such a design is referred to as the von
Neumann architecture and is based on three
concepts:

• Data and instructions are stored in a single
read/write memory.

• The contents of this memory are addressable by
location, without regard to the type of data
contained there.

• Execution occurs in a sequential fashion from
one instruction to the next.

The basic Von Neumann architecture:

Computer

Central Unit

CPU

Main

Memory

ALU Reg

Control Unit

Buffers

Peripheral Devices

I/O system

System

Bus

CPU consists of Control Unit, ALU (Arithmetic and Logic
Unit) and registers and represents a general purpose
processor. in contrast with specialised processors (I/O
processor, arithmetic processor) with a set of instructions,
which means that it recognize and execute a set of
instructions in a binary form.

CPU and main memory forms a Central Unit.

A Central Unit, Input/Output System and a set of system
programs forms a computer.

A computer and peripheral devices forms a computer
system.

Main memory (also named and internal memory) consists
of a set of locations, defined by sequentially numbered
addresses.

Each location contains a binary number that can be
interpreted as either an instruction or data.

The internal memory can be of 2 types:

ROM (Read Only Memory)

RAM (Random Access Memory).

I/O system transfers data from external
devices to CPU and memory and vice versa. It
contains internal buffers for temporarily holding
these data until they can be sent on.

Peripheral devices:

External memory devices (hard-disc, floppy-
disc, compact-disc);

Input devices (keyboard, mouse);

Output devices (printer, monitor).

Data and instructions are communicated with
the computer using input devices, the results are
sent to output devices.

CPU interchanges with other components with data (operands and
results), instructions, addresses, control signals. The communication
is executed through buses.

The system bus:

Address bus: carries the address of a unique memory or
input/output (I/O) device.

Data bus: carries data stored in memory (or in I/O
device) to the CPU or from the CPU to the memory (or I/O
device).

Control bus: is a collection of control signals that coordinate

and synchronize the whole system.

CPU

Main

memory

I/O

system

Data Bus

Address Bus

Control BusS
y
st

em
 B

u
s

2. Central Processing Unit

2.1. CPU basics

A typical CPU has three major

components:

(1) register set,

(2) arithmetic logic unit (ALU),

(3) control unit (CU).

The register set: general-
purpose and special purpose
registers.

The ALU provides the
circuitry needed to perform the
arithmetic, logical and shift
operations. It consists of
combinational logic circuits:
adders, decoders, encoders,
multiplexers and a set of
registers (ex. acumulator), used
as a fast memory in arithmetic and
logic operations.

The control unit is the entity
responsible for fetching the
instruction to be executed from
the main memory and decoding

and then executing it.

Instruction cycle

The basic function performed by a computer
is execution of a program, which consists of a
set of instructions stored in memory.

The CPU reads (fetch) instructions from
memory one at a time and executes each
instruction. Program execution consists of
repeating the process of instruction fetch and
execution.

The processing required for a single
instruction is called an instruction cycle. It
consists of two steps:

fetch cycle

execute cycle

A typical instruction cycle :

1. Instruction address calculation: determine
the address of the next instruction to be
executed by adding a fixed number to the
address of the previous instruction in PC.

2. Instruction fetch: Read the instruction from
its memory location and store it into IR.

3. Instruction decoding: analyse instruction to
determine type of operation to be performed and
operands to be used.

4. Operands address calculation, if needed.

5. Operand fetch: fetch the operand from
memory and store it in CPU registers, if needed.

6. Instruction execution.

7. Results store: results are transferred from
CPU registers to memory, if needed.

A check for pending interrupts is usually included in the cycle.

Examples of interrupts include I/O device request, arithmetic

overflow, division by zero, etc. Interrupts are provided primarily as a

way to impove processing efficiency.

Start
Fetch

cycle

Execute

cycle

Halt

Interrupt

enabled

Interupt

disabled

Interrupt

cycle

The actions of the CPU during an instruction cycle
are defined by micro-orders issued by the control unit.

These micro-orders are individual control signals
sent over dedicated control lines.

Example:

Let us assume that we want to execute an instruction
that moves the contents of register X to register Y and
both registers are connected to the data bus, D.

The control unit will issue a control signal to tell
register X to place its contents on the data bus D.

After some delay, another control signal will be sent
to tell register Y to read from data bus D.

2.4. I8086 microprocessor architecture

The I8086 microprocessor architecture

consists of two sections:

• the execution unit (EU)

• the bus interface unit (BIU)

These two sections work

simultaneously. BIU accesses memory

and peripherals while the EU executes the

instructions previously fetched.

Thus, Intel implemented the concept of pipelining.

Pipelining is the simplest form to allow the CPU to

fetch and execute at the same time.

Execution Unit

The Execution Unit executes all instructions,
provides data and addresses to the Bus Interface Unit
and manipulates the general registers and the Processor
Status Word (Flags register).

The 16-bit ALU performs arithmetic and logic
operations, control flags and manipulates the general
registers and instruction operands.

The Execution Unit does not connect directly to the
system bus. It obtains instructions from a queue
maintained by the Bus Interface Unit. When an
instruction requires access to memory or a peripheral
device, the Execution Unit requests the Bus Interface
Unit to read and write data.

Bus Interface Unit

The Bus Interface Unit facilities
communication between the EU and memory or
I/O circuits.

It is responsible for transmitting address,
data, and control signals on the buses.

This unit consists of the segment registers,
the Instruction Pointer (or Program Counter),
internal communication registers, a logic circuit
to generate a 20 bit address, bus control logic
that multiplexers data and address lines, the
instruction code queue (6 bytes RAM).

2.5. Registers set of I8086
1. General Purpose Registers

The data registers can be addressed by their upper or
lower halves.

Each data register can be used interchangeably as a 16-
bit register or two 8-bit registers.

The pointer and index registers are always accessed as
16-bit values.

The µp can use data registers without constraint in most
arithmetic and logic operations. Arithmetic and logic
operations can also use the pointer and index registers.
Some instructions use certain registers implicitly allowing
compact encoding.

SP - Stack Pointer : Always points to top item of the stack.

BP - Base Pointer: It is used to access any item in the
stack;

SI - Source Index: Contains the address of the current
element in the source string;

DI - Destination Index: Contains the address of the current
element in the destination string;

2. Segment registers

The mp 8086 has a 20-bit address bus for 1 Mbyte
external memory but inside the CPU registers have 16
bits that can access 64 Kbytes.

The 8086 family memory space is divided into
logical segments of up to 64 Kbytes each. The segment
registers contain the base addresses (starting locations)
of these memory segments.

• CS (code segment) - points at the segment containing
the current program.

• DS (data segment)- generally points at the segment
where variables are defined.

• ES (extra segment)- extra segment register, it's up to a
coder to define its usage.

• SS (stack segment)- points at the segment containing
the stack.

3. Special purpose registers

IP - the instruction pointer or

program counter: Always points to next

instruction to be executed. It contains the

offset (displacement) of the next

instruction from the start address of the

code segment.

Flags Register - determines the

current state of the processor. From 16

bits are used only 9.

Condition flags:

0 bit -Carry Flag (CF) - this flag is set to 1 when there is
a carry (borrow) from the 8 or 16 bit in addition or
subtraction operation.

2 bit - Parity Flag (PF) - this flag is set to 1 when there
is even number of one bits in result, and to 0 when there
is odd number of one bits. Even if result is a word only 8
low bits are analyzed!

4 bit - Auxiliary Flag (AF) - set to 1 when there is an
unsigned overflow for low nibble (4 bits).

6 bit - Zero Flag (ZF) - set to 1 when result is zero. For
none zero result this flag is set to 0.

7 bit - Sign Flag (SF) - set to 1 when result is negative.
When result is positive it is set to 0. Actually this flag
take the value of the most significant bit.

11 bit - Overflow Flag (OF) - set to 1 when there is a
signed overflow.

Control flags:

8 bit - Trap Flag (TF) System flag - Used for on-chip
debugging when TF=1. In this case the interrupt is
generated (int 1) which calls a special routine to show
the state of internal registers.

9 bit - Interrupt enable Flag (IF) System flag - when this
flag is set to 1 CPU reacts to interrupts on INTR input of
the mp from external devices. When IF=0 interrupts are
not allowed (masked). IF do not react to NMI (non
maskable) interrupts and to internal interrupts performed
by instruction INT.

Instructions CLI (clear interrupt) and STI (set interrupt)
are used to control this flag.

10 bit - Direction Flag (DF) - this flag is used by some
instructions to process data chains, when this flag is set
to 0 - the processing is done forward (increment of SI
and DI registers), when this flag is set to 1 the
processing is done backward - decrement

(instructions CLD and STD).

The FLAGS register is the status register in Intel x86 microprocessors that contains the current state

of the processor. This register is 16 bits wide. Its successors, the EFLAGS and RFLAGS registers are

32 bits and 64 bits wide, respectively. The wider registers retain compatibility with their smaller

predecessors.

Intel x86 FLAGS Register

FLAGS

0 CF Carry flag S

1 1 Reserved

2 PF Parity flag S

3 0 Reserved

4 AF Auxiliary flag S

5 0 Reserved

6 ZF Zero flag S

7 SF Sign flag S

8 TP Trap flag (single step) X

9 IF Interrupt enable flag X

10 DF Direction flag C

11 OF Overflow flag S

12, 13 IOPL I/O privilege level (286+

only) X

14 NT Nested task flag (286+

only) X

15 0 Reserved

EFLAGS

16 RF Resume flag (386+ only) X

17 VM Virtual 8086 mode flag (386+ only) X

18 AC Alignment check (486SX+ only) X

19 VIF Virtual interrupt flag (Pentium+) X

20 VIP Virtual interrupt pending (Pentium+) X

21 ID Identification (Pentium+) X

22-31 0 Reserved

RFLAGS

32-63 0 Reserved

S: Status flag

C: Control flag

X: System flag

Main memory model

Instructions and data are stored in main memory.

The (main) memory can be modeled as an array of
millions of adjacent cells, each capable of storing a
binary digit (bit), having value of 1 or 0. These cells are
organized in the form of groups of fixed number of cells.

An entity consisting of 8 bits is called a byte, of 16
bits – a word, of 32 bits – a double word.

In order to be able to move a byte in and out of the
memory, a distinct address has to be assigned to each
byte.

The number of bits, l, needed to distinctly
address M bytes in a memory is given by

If the size of the memory is 1 MB, then the number
of bits in the address is

bits.

2logl M

20

2log (2) 20

The addressable memory of I8086 contains
220 bytes (1 Mb). The physical addresses are
within the range 00000-FFFFFh.

Locations 0H-7FH (128 bytes) and FFFF0-
FFFFF (16 bytes) are reserved for special use
(interrupts and system start after reset)

Any 2 neighbour bytes can store a word (16 bits). The smaller
address contains the smaller byte. The address of the word is the
address of its smaller byte.

This strategy to store data is called Little Endian (the opposite
strategy is called Big Endian and it applied by Motorola, Spark and
most RISC machines).

The word with even address is called aligned. The word with
odd address is called unaligned. The processor transfer words with
even addresses in 1 memory access cycle and words with odd
addresses in 2 cycles.

Memory segmentation

Segmentation provides a powerful memory
management mechanism:

It allows programmers to partition their programs
into modules that operate independently of one another.

Segments provide a way to easily implement object-
oriented programs.

Segments allow two processes to easily share data.

It allows extending the addressability of a processor.
In the case of the 8086, segmentation let Intel's
designers extend the maximum addressable memory
from 64KB to 1MB.

• Disadvantage: Difficulties with physical address
manipulation in programs.

A full segmented address contains a segment
component and an offset component

segment:offset.

On the 8086 through the 80286, these two values
are 16 bit constants. On the 80386 and later, the offset
can be a 16 bit constant or a 32 bit constant.

The size of the offset limits the maximum size of a
segment.

On the 8086 with 16 bit offsets, a segment may be
no longer than 216=26*210=64KB; The 80386 and later
processors allow 32 bit offsets with segments as large as
232=22*230=4GB.

The segment portion is 16 bits on all 80x86
processors. This lets a single program have up to 65,536
different segments in the program.

All memory space is considered as a set of 64 Kbyte size segments.

The segments are defined for each application. Segments are

considered to be independent and uniquely addressable. For each

program can be currently addressed 4 segments using CS, DS, ES

and SS.

Segment registers are initialised at the beginning of the

application. They contain the base (low) address of the segment

which is always a multiple of 16 (4 low bits are considered 0).

segment A segment B

segment C

segment D

segment E

0 H 10000 H 20000 H 30000 H

Physical address calculation

Addresses in the programs - logical

addresses.

The linear address that appears on the

address bus - physical address.

Logical address notation

segment: offset

Physical address calculation segment*10H+offset

Segment*10H is equivalent to 1 hexadecimal (4 bits)

shift left. To calculate the physical address in BIU the

base address is shift 4 bits left and the offset is added.

Example. If (CS)=123A h and (IP)=341B h, the physical

address will be

123 0

341

157

A the base address of the segment

B offset

BB a physical address

Sources of physical address:

Stack memory

A stack memory is a small area of reserved memory
used in the following cases:

1. To store temporary the data from general purpose
registers;

2. To store the content of PSW, CS and IP when an
interrupt or a procedure is processed:

3. To transmit the procedures parameters.

The stack organization principle is LIFO.

Stack location is determined by SS:SP.

SS holds the base address of stack and SP holds the
offset of the top of the stack (the most recent stack
entry).

Instructions to operate with stack are:

• PUSH - Copy specified word to top of the stack.

• POP - Copy word from top of the stack to specific
location.

According to Intel convention the stack
grows from higher addresses to lower addresses

(according to Motorola convention the stack
grows from lower addresses to higher
addresses).

The base of the stack (SS) is at the high
address end of the reserved stack block and the
limit is at the low address end.

If all stack elements are 16-bit words (2
bytes), instruction PUSH will cause the
decrement of SP with 2 and POP will cause the
increment of SP with 2.

