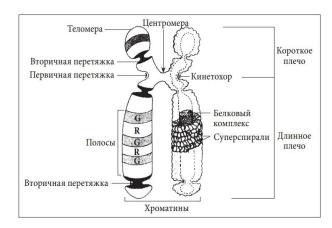
#### ТЕМА 5. ГЕНЕТИКА ЧЕЛОВЕКА

- 1. Человек как объект генетики
- 2. Наследование моногенных признаков
- 3. Наследование полигенных признаков
- 4. Наследование признаков сцепленных с полом

## 1. ЧЕЛОВЕК - КАК ОБЬЕКТ ГЕНЕТИКИ


В живом мире законы генетики носят всеобщий характер, деиствительны они и для человека. Частная генетика человека сформировалась с учетом следующих особенностей, создающих трудности при изучении его наследственности и изменчивости:

- невозможности направленных скрещивании для генетического анализа;
- невозможности экспериментального получения мутаций;
- позднего полового созревания;
- малочисленности потомства;
- невозможности обеспечения одинаковых и строго контролируемых условии для развития потомков от разных браков;
- недостаточной точности регистрации наследственных признаков и небольших родословных;
- сравнительно большого числа (2n=46) плохо различающихся хромосом.

В последние годы генетика человека развивается быстрыми темпами благодаря усовершенствованию новых методов исследования, знаниями и опытом приобретенными биологами и медиками.

### 2. НАСЛЕДОВАНИЕ МОНОГЕННЫХ ПРИЗНАКОВ

У человека, как и у других эукариотических организмов, генетический материал представлен молекулами ДНК, который образуют вместе со структурными белками (гистонами) хромосомы (рис. 5.1; рис. 5.2).



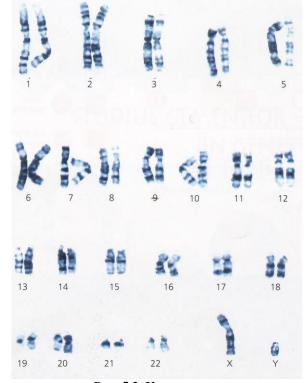



Рис. 5.1. Строение хромосомы

Рис. 5.2. Кариотип человека

Гены могут быть представлены в двух или более алтернативных формах (вариантов) которые определяют разные фенотипические проявления одного признака. Данные варианты генов которые определяют разные варианты признаков (напрмер: карие глаза/голубые глаза), занимают те же позиции (локусы) в гомологичных хромосомах и называются аллелями или аллельными генами (рис. 5.3). Гены которые занимают разные локусы на гомологичных хромосомах или локализованы на разных хромосомах называются неаллельными генами.



Организм имеющий две одинаковые аллели в том же локусе гомологичных хромосом (G-G или g-g; W-W или w-w) называется *гомозиготным*, организм имеющий две разные аллели в том же локусе гомологичных хромосом (Gg; Ww) называется *гетерозиготным*.

Признаки человека могут определяться одним геном (моногенные) или двумя и более генами (полигенные). В таблице 5.1 представлены некоторые моногенные признаки человека.

Таблица 5.1. Аутосомные моногенные признаки

| Доминантные признаки (А)   | Рецессивные признаки (а)   |
|----------------------------|----------------------------|
| Черные глаза/Карие         | Голубые глаза/Зелёные      |
| Большие глаза              | Маленькие глаза            |
| Черные волосы/Каштановые   | Светлые волосы             |
| Курчавые волосы            | Волнистые волосы           |
| Волнистые волосы           | Прямые волосы              |
| Нос с горбинкой            | Прямой нос                 |
| Большой нос                | Маленький нос              |
| Наличие веснушек           | Отсутствие веснушек        |
| Правша                     | Левша                      |
| Положительный резус фактор | Отрицательный резус фактор |

Доминантные гены проявляются у гетерозиготных организмов, а рецессивные гены подавляются и не проявляются у гетерозиготных организмов.

А – карие глаза А – голубые глаза

 $\begin{array}{c|c} P: & AA \times & aa \Rightarrow \\ \hline F_1 & \\ \hline & A & Aa \\ \end{array}$ 

Типичный пример взаимодействия аллельных генов — наследование антигенных групп крови человека: A, B, AB и 0, детерминируемых геном I. Известны 3 типа аллелей этого гена  $I^A$ ,  $I^B$ ,  $I^0$ . Генный локус для этих аллелей находится на длинном плече хромосомы 9. Основными продуктами первых двух генов —  $I^A$ ,  $I^B$  но не гена  $I^0$  — являются специфические ферменты гликозилтрансферазы.

В различных сочетаниях аллелей образуются 4 группы крови: первая – с генотипом  $I^0I^0$ , вторая –  $I^A$   $I^A$  или  $I^A$   $I^0$ ; третья –  $I^B$   $I^B$  или  $I^B$   $I^0$ ; четвертая –  $I^A$   $I^B$ . Если человек гетерозиготен  $I^AI^B$  его эритроциты несут оба антигена A и B. Это и есть случай кодоминирования, когда обе аллели  $I^AI^B$  функциональны, они работают в гетерозиготе как бы независимо друг от друга, определяя новый признак – 4 группу.

Знание генетического контроля групп крови имеет большое практическое значение. Кровь у человека состоит из клеток (45%) и плазме — бледно-желтая жидкость (55%). Так, у людей с группой 0 в плазме крови присутствуют гемагглютинины  $\alpha$  и  $\beta$ , с группой A — гемагглютинин  $\beta$ , с группой B — гемагглютинин  $\alpha$ . У людей группы AB в плазме нет ни  $\alpha$ - ни  $\beta$ - гемагглютининов. При этом агглютинин  $\alpha$  специфически связывает и осаждает эритроциты с антигеном A, агглютинин  $\beta$  — эритроциты  $\alpha$  антигеном  $\alpha$ . На этих взаимоотношениях основа система переливания крови.

Таблица 1. Группы крови человека

| Реципиенты<br>(гемагглютинины)                                                | Доноры<br>(генотип)                |                                                                    |                                                                                                    |                                     |
|-------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------|
|                                                                               | O (I <sup>0</sup> I <sup>0</sup> ) | A (I <sup>A</sup> I <sup>A</sup> ; I <sup>A</sup> I <sup>0</sup> ) | $\mathbf{B}(\mathbf{I}^{\mathbf{B}}\mathbf{I}^{\mathbf{B}};\mathbf{I}^{\mathbf{B}}\mathbf{I}^{0})$ | AB (I <sup>A</sup> I <sup>B</sup> ) |
| Ο (α β)                                                                       | -                                  | +                                                                  | +                                                                                                  | +                                   |
| Α (β)                                                                         | -                                  | -                                                                  | +                                                                                                  | +                                   |
| Β (α)                                                                         | -                                  | +                                                                  | -                                                                                                  | +                                   |
| AB (O)                                                                        | -                                  | -                                                                  | -                                                                                                  | -                                   |
| <i>Примечание</i> : «+» – реакция осаждения эритроцитов при переливании крови |                                    |                                                                    |                                                                                                    |                                     |

Нарушение этих правил приводит к геморрагическому шоку вследствие связывания эритроцитов гемагглютининами плазмы.

# 3. НАСЛЕДОВАНИЕ ПОЛИГЕННЫХ ПРИЗНАКОВ

Неаллельные гены могут взаимодействовать по типу *полимерии*. При полимерии один признак определяется одновременным действием различных неаллельных генов. Совокупность генов, оказывающих одинаковое влияние на один какой-либо признак называются *полигенами*. Например, пигментация кожи у человека определяется двумя неаллельными генами. При формировании таких признаков полигены действуют *кумулятивно* (аддитивно), определяя вариабельность количественных признаков. Действие полигенов однозначно.

 $A_1, A_2$  – черный цвет (синтез пигмента меланина)  $a_1, a_2$  – белый цвет (отсутствие пигмента)

P:  $\bigcirc$  a<sub>1</sub>a<sub>1</sub>a<sub>2</sub>a<sub>2</sub>  $\times$   $\bigcirc$  A<sub>1</sub>A<sub>1</sub>A<sub>2</sub>A<sub>2</sub>  $\rightarrow$  F<sub>1</sub> A<sub>1</sub>a<sub>1</sub>A<sub>2</sub>a<sub>2</sub> P:  $\bigcirc$  A<sub>1</sub>a<sub>1</sub>A<sub>2</sub>a<sub>2</sub>  $\times$   $\bigcirc$  A<sub>1</sub>a<sub>1</sub>A<sub>2</sub>a<sub>2</sub>  $\rightarrow$  F<sub>2</sub>

| 213      | $A_1A_2$       | $A_1a_2$       | $a_1A_2$       | $a_1a_2$       |
|----------|----------------|----------------|----------------|----------------|
| $A_1A_2$ | $A_1A_1A_2A_2$ | $A_1A_1A_2a_2$ | $A_1a_1A_2A_2$ | $A_1a_1A_2a_2$ |
| $A_1a_2$ | $A_1A_1A_2a_2$ | $A_1A_1a_2a_2$ | $A_1a_1A_2a_2$ | $A_1a_1a_2a_2$ |
| $a_1A_2$ | $A_1a_1A_2A_2$ | $A_1a_1A_2a_2$ | $a_1a_1A_2A_2$ | $a_1a_1A_2a_2$ |
| $a_1a_2$ | $A_1a_1A_2a_2$ | $A_1a_1a_2a_2$ | $a_1a_1A_2a_2$ | $a_1a_1a_2a_2$ |

# 4. НАСЛЕДОВАНИЕ ПРИЗНАКОВ СЦЕПЛЕННЫХ С ПОЛОМ

Сцепленными с полом признаками называются такие, гены которых расположены в половых хромосомах X или У. Надо иметь в виду, что половые хромосомы имеют весьма своебразное строение – в X- и У хромосоме имеются негомологичные участки. В таких участках X-хромосомы содержатся гены (например, ген гемофилии, дальтонизма, мышечной дистрофии) отсутствующие в У-хромосоме, и наоборот в негомологичном участке У-хромосомы содержатся гены, у которых нет аллелей в X-хромосоме (например, ген определяющий развитие волосков на краю ушной раковины – он наследуется *голандрически*, т.е. передается с У-хромосомой непосредственно от отца к сыну).

Если ген сцеплен с X-хромосомой, он может передаваться от отца только дочерям, а от матери в равной степени распределяться между дочерями и сыновьями. Если ген сцеплен с X-хромосомой и является рецессивным, у женщин он может проявляется только в гомозиготном состоянии. У мужчин второй хромосомы нет, поэтому такой ген проявляется всегда.

Присутствие только одной аллели в единичном числе у диплоидного организма называется гемизиготным состоянием (гемизиготной).

 $\Gamma$ емофилия — несвертываемость крови, наследуется как рецессивный, сцепленный с полом признак.  $\Gamma$ емофилия A (королевская) связана с отсутствием в организме антигемофильного глобулина (фактор 8) — выражается в не останавливаемых кровотечениях, возникающих при малейших поранениях, и приводит к гибели больных в раннем возрасте. У больных не образуется фибрин из фибриногена, а именно нити фибрина играют важную роль в реакции свертывания крови.

Другой тип — гемофилия B — открыт сравнительно недавно, он связан с дефектом другого фактора свертывания крови — т

 $X^H$  – здоровый фенотип

 $X^h$  – гемофилия

P:  $\bigcirc X^H X^h \times \triangle X^H Y \rightarrow F_1$ 

| ₽ <b>\</b> ♂ | $X^{H}$                 | Y                            |  |  |
|--------------|-------------------------|------------------------------|--|--|
| $X^{H}$      | $X^HX^H$ — здоровая     | ${ m X^HY}$ — здоровый       |  |  |
| Xh           | $X^{H}X^{h}$ — здоровая | X <sup>h</sup> Y – гемофилик |  |  |