## Switching algebra



## Rules for BCD addition

1. If the sum is smaller or equal to 9 the addition is done without correction.
2. If after addition illegal combination appears or carry out occurs the correction is 6 (0110).
3. Carry out which appears after correction is added to the next tetrad.

## Switching Algebra

Switching algebra consist of :

1) A set of elements $B=\{0,1\}$;
2) Logic operations AND, OR and NOT, that are defined as:

| AND | OR | NOT |
| :--- | :--- | :--- | :--- |
| $0^{*} 0=0$ | $0+0=0$ | $\overline{0}=1$ |
| $0^{*} 1=0$ | $0+1=1$ | $1=0$ |
| $1^{*} 0=0$ | $1+0=1$ |  |
| $1 * 1=1$ | $1+1=1$ |  |

Single-variable Theorems (Axioms)

1. $X+0=X \quad X \cdot 1=X \quad$ - Identities
2. $X+1=1 \quad X \cdot 0=0$

- Null element

3. $\mathbf{X}+\mathbf{X}=\mathbf{X} \quad \mathbf{X} \cdot \mathbf{X}=\mathbf{X} \quad$ - Idem potency
4. $\left(X_{n}^{\prime}\right)=X \quad$ - Involution
5. $X+X^{\prime}=1 \quad X \cdot X^{\prime}=0 \quad$ - Complements

| No | Logic expressions |  | Theorem |
| :--- | :--- | :--- | :--- |
| 1. | $x_{1}+x_{2}=x_{2}+x_{1}$ | $x_{1} \cdot x_{2}=x_{2} \cdot x_{1}$ | Commutativity |
| 2. | $\left(x_{1}+x_{2}\right)+x_{3}=x_{1}+\left(x_{2}+x_{3}\right)$ | $\left(x_{1} \cdot x_{2}\right) \cdot x_{3}=x_{1} \cdot\left(x_{2} \cdot x_{3}\right)$ | Associativity |
| 3. | $x_{1} x_{2}+x_{1} x_{3}=x_{1} \cdot\left(x_{2}+x_{3}\right)$ | $\left(x_{1}+x_{2}\right) \cdot\left(x_{1}+x_{3}\right)=x_{1}+\left(x_{2} \cdot x_{3}\right)$ | Distributivity/ |
| 4. | $x_{1}+x_{1} x_{2}=x_{1}$ | $x_{1} \cdot\left(x_{1}+x_{2}\right)=x_{1}$ | Covering |
|  | Proof: $x_{1}+x_{1} x_{2}=x_{1} \cdot 1+x_{1} x_{2}=x_{1}\left(1+x_{2}\right)=x_{1} \cdot 1=x_{1}$ |  |  |
|  | $x_{1} x_{2}+x_{1} \overline{x_{2}}=x_{1}$ | $\left(x_{1}+x_{2}\right) \cdot\left(x_{1}+\overline{x_{2}}\right)=x_{1}$ | Combining |
|  | Proof: $x_{1} x_{2}+x_{1} \overline{x_{2}}=x_{1} \cdot\left(x_{2}+\overline{x_{2}}\right)=x_{1} \cdot 1=x_{1}$ |  |  |
| 6. | $\overline{x_{1} \cdot x_{2}}=\overline{x_{1}}+\overline{x_{2}}$ | $\overline{x_{1}+x_{2}}=\overline{x_{1}} \cdot \overline{x_{2}}$ | De Morgan |

## Minimize logic expressions

$$
\begin{aligned}
& x_{1} x_{2}+x_{1} x_{2} \bar{x}_{3} x_{4}+x_{1} x_{2} x_{4} \bar{x}_{5}+x_{1} x_{2} \bar{x}_{3} x_{5}+\bar{x}_{3} x_{4} x_{5} \\
& x_{1} x_{2} x_{3} x_{4} \cdot\left(x_{1} x_{2} x_{3} \bar{x}_{4}+x_{1} \bar{x}_{2} x_{3} x_{4}+\bar{x}_{1} x_{2} x_{3} x_{4}+x_{1} x_{2} \bar{x}_{3} x_{4}\right) \\
& x_{1} x_{2} x_{3}+x_{3}\left(\overline{\overline{x_{1}} \bar{x}_{2} \cdot \overline{\bar{x}_{1} x_{3}}}\right)
\end{aligned}
$$

## Minimize logic expressions

$$
\begin{aligned}
& \left.\left(\bar{x}_{1}+x_{2}\right)\left(x_{3} \cdot\left(\bar{x}_{4}+x_{5}\right)\right)+\left(\bar{x}_{1}+x_{2}\right)\left(\overline{x_{1} \cdot\left(\bar{x}_{2}+x_{3}\right.}\right)\right) \\
& x_{1} x_{2} x_{3}+x_{2}\left(\overline{\overline{x_{1} \bar{x}_{2} x_{3}} \cdot \overline{\bar{x}_{1} x_{3}}}\right)+\overline{\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}+x_{4}}
\end{aligned}
$$

## Write Truth tables

$$
F=\bar{x}_{1} x_{2}+\bar{x}_{1} \bar{x}_{2} x_{3}
$$



## Write Truth tables

$$
F=x_{1}+\bar{x}_{2}\left(\bar{x}_{3}+x_{4}\right)
$$



## Write Truth tables

$$
F=\overline{x_{1}+x_{2}}+x_{3}+x_{4}
$$



Write canonical sum and canonical product

$$
F=\sum(2,4,6,7)
$$

$$
F=\prod(0,1,7)
$$

$$
F=x_{1}+\bar{x}_{2} \bar{x}_{3}
$$

