Switching algebra

Rules for BCD addition

- 1. If the sum is smaller or equal to 9 the addition is done without correction.
- 2. If after addition illegal combination appears or carry out occurs the correction is 6 (0110).
- 3. Carry out which appears after correction is added to the next tetrad.

Switching Algebra

Switching algebra consist of:

- 1) A set of elements $B = \{0,1\}$;
- 2) Logic operations AND, OR and NOT, that are defined as:

AND	OR		NOT
0*0=0	0+0=0	$\overline{0} = 1$	
0*1=0	0+1=1	$\overline{1} = 0$	
1*0=0	1+0=1		
1*1=1	1+1=1		

Single-variable Theorems (Axioms)

- 1. X+0=X X·1=X Identities
- 2. X+1=1 X·0=0 Null element
- 3. X+X=X X·X=X Idem potency
- 4. (X') = X Involution
- 5. X+X=1 $X\cdot X=0$ Complements

No	Logic expressions		Theorem		
1.	$x_1 + x_2 = x_2 + x_1$	$x_1 \cdot x_2 = x_2 \cdot x_1$	Commutativity		
2.	$(x_1 + x_2) + x_3 = x_1 + (x_2 + x_3)$	$(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3)$	Associativity		
3.	$x_1 x_2 + x_1 x_3 = x_1 \cdot (x_2 + x_3)$	$(x_1 + x_2) \cdot (x_1 + x_3) = x_1 + (x_2 \cdot x_3)$	Distributivity/		
4.	$x_1 + x_1 x_2 = x_1$	$x_1 \cdot (x_1 + x_2) = x_1$	Covering		
	Proof: $x_1 + x_1x_2 = x_1 \cdot 1 + x_1x_2 = x_1(1 + x_2) = x_1 \cdot 1 = x_1$				
5.	$x_1 x_2 + x_1 \overline{x_2} = x_1$	$(x_1 + x_2) \cdot (x_1 + \overline{x_2}) = x_1$	Combining		
	Proof: $x_1 x_2 + x_1 \overline{x_2} = x_1 \cdot (x_2 + \overline{x_2}) = x_1 \cdot 1 = x_1$				
6.	$\overline{x_1 \cdot x_2} = \overline{x_1} + \overline{x_2}$	$\overline{x_1 + x_2} = \overline{x_1} \cdot \overline{x_2}$	De Morgan		

Minimize logic expressions

$$x_1x_2 + x_1x_2\overline{x}_3x_4 + x_1x_2x_4\overline{x}_5 + x_1x_2\overline{x}_3x_5 + \overline{x}_3x_4x_5$$

$$x_1x_2x_3x_4 \cdot (x_1x_2x_3\overline{x}_4 + x_1\overline{x}_2x_3x_4 + \overline{x}_1x_2x_3x_4 + x_1x_2\overline{x}_3x_4)$$

$$x_1 x_2 x_3 + x_3 (\overline{\overline{x_1} \overline{x}_2} \cdot \overline{\overline{x}_1} x_3)$$

Minimize logic expressions

$$(\overline{x}_1 + x_2)(x_3 \cdot (\overline{x}_4 + x_5)) + (\overline{x}_1 + x_2)(\overline{x_1 \cdot (\overline{x}_2 + x_3)})$$

$$x_1 x_2 x_3 + x_2 (\overline{x_1 \overline{x_2} x_3} \cdot \overline{x_1} x_3) + \overline{x_1} + \overline{x_2} + \overline{x_3} + x_4$$

Write Truth tables

$$F = \overline{x}_1 x_2 + \overline{x}_1 \overline{x}_2 x_3$$

	x1	x2	х3	F	
0					
1					
2					
3					
4					
5					
6					
7					

Write Truth tables

$$F = x_1 + \overline{x}_2(\overline{x}_3 + x_4)$$

	x1	x2	х3	F
0				
1				
2				
3				
4				
5				
6				
7				

Write Truth tables

$$F = \overline{x_1 + x_2 + x_3} + x_4$$

	x1	x2	x 3	F	
0					
1					
2					
3					
4					
5					
6					
7					

Write canonical sum and canonical product

$$F = \sum (2,4,6,7)$$

$$F = \prod (0,1,7)$$

$$F = x_1 + \overline{x}_2 \overline{x}_3$$

