Topic 5. Switching algebra. Logic function minimisation.

Switching Algebra

Switching algebra consist of:

- 1) A set of elements $B = \{0,1\}$;
- 2) Logic operations AND, OR and NOT, that are defined as:

AND	OR		NOT
0*0=0	0+0=0	$\overline{0} = 1$	
0*1=0	0+1=1	$\overline{1} = 0$	
1*0=0	1+0=1		
1*1=1	1+1=1		

Single-variable Theorems (Axioms)

3.
$$X+X=X$$
 $X\cdot X=X$ - Idem potency

4.
$$X = X$$
 - Involution

5.
$$X + \overline{X} = 1$$
 $X \cdot \overline{X} = 0$ - Complements

Two and three variable Theorems

No	Logic expressions		Theorem
1.	$x_1 + x_2 = x_2 + x_1$	$x_1 \cdot x_2 = x_2 \cdot x_1$	Commutativity
2.	$(x_1 + x_2) + x_3 = x_1 + (x_2 + x_3)$	$(x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3)$	Associativity
3.	$x_1 x_2 + x_1 x_3 = x_1 \cdot (x_2 + x_3)$	$(x_1 + x_2) \cdot (x_1 + x_3) = x_1 + (x_2 \cdot x_3)$	Distributivity/
4.	$x_1 + x_1 x_2 = x_1$	$x_1 \cdot (x_1 + x_2) = x_1$	Covering
	Proof: $x_1 + x_1 x_2 = x_1 \cdot 1 + x_1 x_2 = x_1 \cdot 1 + x_2 \cdot 1 + x_2 \cdot 1 + x_3 \cdot 1 + x_4 \cdot 1 + x_4 \cdot 1 + x_5 \cdot 1 + x$	$= x_1(1 + x_2) = x_1 \cdot 1 = x_1$	
5.	$x_1 x_2 + x_1 \overline{x_2} = x_1$	$(x_1 + x_2) \cdot (x_1 + \overline{x_2}) = x_1$	Combining
	Proof: $x_1 x_2 + x_1 \overline{x_2} = x_1 \cdot (x_2 + x_2)$	$\overline{(x_2)} = x_1 \cdot 1 = x_1$	
6.	$\overline{x_1 \cdot x_2} = \overline{x_1} + \overline{x_2}$	$\overline{x_1 + x_2} = \overline{x_1} \cdot \overline{x_2}$	De Morgan

Obs. 1. The number of terms in theorems can be extended.

Obs. 2. In all theorems it is possible to replace each variable with an arbitrary logic expression.

We can substitute complex expressions using these theorems.

Logic signals and gates

In a logic function $y = f(x_1, x_2,...,x_n)$ variables and functions can take on only 2 values: 0 and 1.

A logic fuction of n variables are defined in $m=2^n$ points. As the value of a logic function in these points can be only 0 and 1, there are $N=2^m$ such functions.

For n=1: N=4

fi	<u>x</u> 0	1	Representation	Name
f_0	0	0	0	Constant 0
$\mathbf{f_1}$	0	1	X	Variabile x
\mathbf{f}_2	1	0	X	Negation of x
f_3	1	1	1	Constant 1

Function	Logic gate	Simbol	Trooth tabel
Negation	Invertor NOT	->	x f 0 1
$F = \overline{x}$			1 0
Identity	BUFFER		x f
F = x			0 0 1 1
Logic multiplication	AND		$x_1 x_2 f$
$\mathbf{f} = \mathbf{x}_1 \cdot \mathbf{x}_2$		<u> </u>	0 0 0
			0 1 0
			1 0 0 1 1
_	gic NAND		<u>x</u> ₁ x ₂ f
multiplication		→)⊶	0 0 1
Shaffers function			0 1 1
$f = \overline{x_1 \cdot x_2}$			1 0 1
$J = \kappa_1 \kappa_2$			1 1 0

T 1 11/41	OB		l c
Logic addition	OR		$ \mathbf{x}_1 \mathbf{x}_2 \mathbf{f}$
$\mathbf{f} = \mathbf{x}_1 + \mathbf{x}_2$		7	0 0 0
1 A ₁ · A ₂			
			0 1 1
			1 0 1
			1 1 1
Negation of logic addition	NOR		$ \mathbf{x}_1 \ \mathbf{x}_2 \mathbf{f}$
		7	
Pirs function		→—	0 0 1
C			0 1 0
$f = x_1 + x_2$			1 0 0
			1 0 0
			1 1 0
Additiion modulo 2	Exclusive		$x_1 x_2 f$
Addition modulo 2		75	=======================================
$f = x_1 \oplus x_2$	OR		0 0 0
$J \sim n_1 \odot n_2$	XOR		0 1 1
	AOR		" 1
			1 0 1
			1 1 0
Equivalence	Exclusive		$ \mathbf{x}_1 \ \mathbf{x}_2 $ \mathbf{f}
<u> </u>	NOR	$\rightarrow T$	0 0 1
$f = x_1 \oplus x_2$			
J 11 1 12	XNOR	12	0 1 0
			1 0 0
			1 1 1

Standard Representation of Logic Functions

Logic functions can be represented in 3 modes:

- graphically (truth table, Karnaugh map, logic circuit and timing diagram);
- analytically (canonical sum, canonical product, minimal sum and minimal product);
- as a list (minterm list, maxterm list).

Truth table

Traditionally the input combinations are arranged in rows in ascending binary counting order, and the corresponding output values are written in a column next to the rows. The general structure of a 3-variable truth table is shown below:

Row	X	Y	Z	F
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	0
4	1	0	0	0
5	1	0	1	1
6	1	1	0	0
7	1	1	1	1

The TT for n-variable logic function has 2ⁿ rows.

Karnaugh Maps

A Karnaugh map is a graphical representation of a logic function's TT. Karnaugh maps for logic functions of 2,3 and 4 variables:

X ₁ X ₂ X ₃	00	01	11	10
0	0	2	6	4
1	1	3	7	5

X ₁ X ₂ X ₃ X ₄	0	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

The columns and rows are labeled using Gray code or reflected code -00, 01, 11, 10.

Each cell, because of the Gray code, corresponds to an input combination that differs from each of its immediately adjacent neighbors in only one variable. E.g.: cells 5 and 13 in the 4-variable map differ only in the value of x.

Karnaugh Maps

	x1	x2	х3	F
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

x1x2				
x3	00	01	11	10
0	000	010	110	100
1	001	011	111	101
x1x2				

00	01	11	10
0	2	6	4
1	3	7	5
	00 0 1	00 01 0 2 1 3	00 01 11 0 2 6 1 3 7

x1x2				
x3	00	01	11	10
0			1	1
1	1	1		

Canonical forms

Canonical sum

A n-variable minterm is a normal product term with n literals. There are 2ⁿ such product terms. The literals are written in the minterm according to the following rule:

Canonical produc

A n-variable **maxterm** is a normal sum term with n literals. There are 2ⁿ such sum terms. The literals are written in the maxterm according to the following rule:

$$x_{i} = \begin{cases} \frac{x_{i} & \text{if } x_{i} = 1 \\ \overline{x_{i}} & \text{if } x_{i} = 0 \end{cases} \qquad x_{1} \overline{x}_{2} x_{3}$$

$$\boldsymbol{x}_1 \overline{\boldsymbol{x}}_2 \boldsymbol{x}_3$$

$$\mathbf{x}_{i} = \begin{cases} \frac{\mathbf{x}_{i}}{\mathbf{x}_{i}} & \text{if } \mathbf{x}_{i} = 0 \\ \overline{\mathbf{x}}_{i} & \text{if } \mathbf{x}_{i} = 1 \end{cases} \quad \overline{\mathbf{x}}_{1} + \mathbf{x}_{2} + \overline{\mathbf{x}}_{3}$$

The **canonical sum** of a logic function is a sum of the minterms corresponding to TT rows (input combination) for which the function produces a 1 output.

$$F = \overline{x_1} \overline{x_2} \overline{x_3} + \overline{x_1} \overline{x_2} \overline{x_3} + x_1 \overline{x_2} \overline{x_3} + x_1 \overline{x_2} \overline{x_3}$$

The **canonical product** of a logic function is the product of the maxterms, corresponding to input combinations for which the function produces a 0 output.

$$F = X_1 X_2 X_3 + X_1 X_2 X_3 + X_1 X_2 X_3 + X_1 X_2 X_3$$

$$F = (x_1 + x_2 + x_3) \cdot (x_1 + x_2 + \overline{x_3}) \cdot (\overline{x_1} + x_2 + x_3) \cdot (\overline{x_1} + x_2 + \overline{x_3})$$

Implementation of logic functions

- Implementation of logic function means its realization with logic gates.
- The most used forms of implementation are NAND and NOR.

Cost (C)- the number of all inputs in logic gates. It is measured in Quines (Q).

Delay time (T_d) – The number of levels in the circuit or the maximal number of logic gates that cross the signal from input to output. It is measured in τ .

Examples

Ex:
$$F_{FDM} = \overline{x_1} x_2 + x_1 \overline{x_2}$$

Ex:
$$F_{FDM} = \overline{x_1} \overline{x_2} + x_1 \overline{x_2} = \overline{x_1} \overline{x_2} \cdot \overline{x_1} \overline{x_2}$$

$$C = 6 \lambda$$

$$T_d = 2 \tau$$

$$F_{FCM} = \overline{(\overline{x_1} + \overline{x_2}) \cdot (\overline{x_1} + \overline{x_2})} = \overline{(\overline{x_1} + \overline{x_2})} + \overline{(\overline{x_1} + \overline{x_2})}$$

$$T_d=3 \tau$$

Karnaugh Maps

Each input combination with a "1" in the truth table corresponds to a <u>minterm</u> in the logic function's canonical sum. Since pairs of adjacent "1" cells in the <u>Karnaugh</u> map have <u>minterms</u> that differ in only one variable, the <u>minterm</u> pairs can be combined into a single product term (Theorem 5).

We can simplify a logic function by combining pairs of adjacent 1-cells (minterms) whenever possible and write a sum of product terms that covers all of the 1-cells.

In general, 2ⁱ 1-cells may be combined to form a product term containing n-i literals, where n is the number of variables in the function.

Graphically this rule means that we can circle rectangular sets of 2ⁱ 1's. We can determine the literals of the corresponding product terms directly from the map, for each variable we make the following determination.

- · If a circle covers only areas of the map where the variable is "0" then the variable is complemented in the product term.
- · If a circle covers only areas of the map where the variable is "1" uncomplemented.
- · If a circle covers both areas of the map "0" and "1", then the variable does not appear in the product term.

Obs. The number of circles must be minimal and the number of 1's in each circle -maximal.

Examples

Example 1

$$F(x_{1,}x_{2},x_{3},x_{4}) = \sum (1,2,3,9,10,15)$$

Minimal sum

No	X1	X2	X3	X4	F
0	0	0	0	0	0
1	0	0	0	1	1
2 3	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	1

$$F = \overline{x}_1 \overline{x}_2 x_4 + \overline{x}_2 \overline{x}_3 x_4 + \overline{x}_2 x_3 \overline{x}_4 + x_1 x_2 x_3 x_4$$

Logic circuit

$$F = \overline{x}_1 \overline{x}_2 x_4 + \overline{x}_2 \overline{x}_3 x_4 + \overline{x}_2 x_3 \overline{x}_4 + x_1 x_2 x_3 x_4$$

Cost (C)- the number of all inputs in logic gates. It is measured in Quines (Q). Delay time (T_d) – The number of levels in the circuit or the maximal number of logic gates that cross the signal from input to output. It is measured in τ .

Applying De Morgan theorem:

$$F = \overline{\overline{x}_1 \overline{x}_2 x_4 + \overline{x}_2 \overline{x}_3 x_4 + \overline{x}_2 x_3 \overline{x}_4 + x_1 x_2 x_3 x_4} = \overline{\overline{\overline{x}_1 \overline{x}_2 x_4} \cdot \overline{\overline{x}_2 \overline{x}_3 x_4} \cdot \overline{\overline{x}_2 \overline{x}_3 \overline{x}_4} \cdot \overline{\overline{x}_1 x_2 x_3 x_4}}$$

Example 2 $F(x_1, x_2, x_3, x_4) = \prod (0,4,5,6,7,8,11,12,13,14)$

Minimal product

	No X1 X2 X3 X4 F										
0	0	0	0	0	0						
1	0	0	0	1	1						
3	0	0	1	0	1						
3	0	0	1	1	1						
4	0	1	0	0	0						
5	0	1	0	1	0						
6	0	1	1	0	0						
7	0	1	1	1	0						
8	1	0	0	0	0						
9	1	0	0	1	1						
10	1	0	1	0	1						
11	1	0	1	1	0						
12	1	1	0	0	0						
13	1	1	0	1	0						
14	1	1	1	0	0						
15	1	1	1	1	1						

$$F = (x_1 + \overline{x}_2) \bullet (x_3 + x_4) \bullet (\overline{x}_2 + x_3) \bullet (\overline{x}_2 + x_4) \bullet (\overline{x}_1 + x_2 + \overline{x}_3 + \overline{x}_4)$$

"Don't Care "Input Combinations

Sometimes the specification of a combinational circuit is so that its output doesn't matter for certain input combinations, called "don't cares". This may be true because the outputs really don't matter when these input combinations occur or because these input combinations never occur in normal operation.

- Obs. 1. Allow d's to be included when circling sets of 1's to make the sets as large as possible. This reduces the number of variables.
- Obs. 2. Do not circle any sets that contain only d's. It would unnecessarily increase its cost.

E.g.:
$$F(x_1, x_2, x_3, x_4) = \sum_{x_1, x_2, x_3, x_4} (2, 5, 9, 10) + *(0, 1, 4, 7, 8, 11, 14)$$

$$\mathbf{F} = \overline{\mathbf{x}}_1 \overline{\mathbf{x}}_3 + \mathbf{x}_1 \overline{\mathbf{x}}_2 + \overline{\mathbf{x}}_2 \overline{\mathbf{x}}_4$$

Multiple Output Minimization

$$F_1 = \underset{1}{V}(0,1,2,4,6,7,8,10,15)$$
$$F_2 = \underset{1}{V}(0,2,4,7,8,9,10,15)$$

$$F_1 = \overline{x_2}\overline{x_4} + \overline{x_1}\overline{x_4} + \overline{x_2}x_3x_4 + \overline{x_1}\overline{x_2}\overline{x_3} \qquad \qquad F_2 = \overline{x_2}\overline{x_4} + \overline{x_1}\overline{x_3}\overline{x_4} + \overline{x_2}x_3x_4 + x_1\overline{x_2}\overline{x_3}$$

Minimisation of 5-variable logic function

×	1x2x3								
x4x5		000	001	011	010	110	111	101	100
	00	0	4	12	8	24	28	20	16
	01	1	5	13	9	25	29	21	17
	11	3	7	15	11	27	31	23	19
	10	2	6	14	10	26	30	22	18

Alipiri corecte:

•	(1x2x3								
x4x5		000	001	011	010	110	111	101	100
	00								
	01								
	11								
	10								

Alipiri incorecte:

Example

	Diagrama Karnaugh pentru funcții de 5 variabile											
2	x1x2x3											
x4x5		000	001	011	010	110	111	101	100			
	00	o	4	12	8	24	28	20	16			
	01	1	5	13	9	25	29	21	17			
	11	3	7	15	11	27	31	23	19			
	10	2	6	14	10	26	30	22	18			
						ï						

×	1x2x3									
x4x5		000	001	011	010	110	111	101	100	
	00	1			1	1			1	
	01	1		1			1		1	
	11		1		1	1	1	1		
	10	1	1		1	1		1	1	

×	1x2x3		5		1				
x4x5		000	001	011	010	110	111	101	100
	00	1	\		1	1			1
	01	- 1		1			1		1
3	11		1		*1	1	1	1	
	10	1	1	/	1	1	5	1	1
			6	/4			\	2	

$$F = \overline{x}_{3}\overline{x}_{5} + \overline{x}_{2}x_{3}x_{4} + \overline{x}_{2}\overline{x}_{3}\overline{x}_{4} + x_{2}\overline{x}_{3}x_{4} + x_{2}x_{3}\overline{x}_{4}x_{5} + x_{1}x_{2}x_{3}x_{5}$$