Topic 4. Arithmetic operations

Binary Addition and Subtraction

* The rules for addition:

_ Example: .
0+0=0 11
0+1=1 . 6 0110
1+0=1 3 0011
1+1=0 (carry) ? 1001
 The rules for subtraction:
0-0=0 Example:
0-1=1 (1-borrow) 6 0110
1-0=1 3 7 0011

1-1=0 3 0011

Sign-magnitude system (DC)
Direct code (DC):

X = 3 = 00011
y = -9 = 11001
Find x +y.

Steps:

1. Compare numbers and find the largest one by absolute value.

2. Determine if the signs are the same.
. Change the arithmetic operation if the signs are different.

L

1601 -
0011

9110

S U N

4. Assign the sign of the largest number to the result. (10110 = -6)

Addition is not done in DC because:

¢ We need to have an adder, a subtractor, a comparator and a more complex control unit.

e The sign is processed separately from the module.

One’s complement system (IC)

Advantages:

e Subtraction is substituted by addition.

e The sign is processed with the whole number.

Disadvantages:

e Addition is done in 2 steps because the carry out from the sign position is added to the number.

¢ 0 has two representations.

X=-1
xpc = 10001
X = 11110
y=12
yie = 01100

1 11110 +
2 01100

3 -
4 01011 #carried the one from the leftmost to the rightmost

Addition and Subtraction in Two’s Complement System

* |f we represent the negative number in the
two’s complement system we can substitute
the subtraction with addition: A-B=A+B.

* |n a two’s complement system representation
the sigh and the significant are examined
together and the result is obtained in two’s

complement representation.

Example 1:
A=27,,——11011,

Apc=1.11011
Acc=1.00101

A+B

Ace= | 1.00101
Bee= 0.11111
Cec= 0.00100

c:41[]

E S

B=31,~11111,
Bpc=0.11111
Bee=0.11111

Example 2:

ﬁzgmz[}lﬂﬂﬂg B_—Eﬁm_—ll[}[}lg
Apnc=0.01000 Bpc=1.11001
Acc=0.01000 Bee=1.00111
A+B
Acc—= ., 0.01000
Bee= 1.00111
Cec= 1.01111
complementing 110000
+1
110001

C=10001,=—171¢

Example 3:

A=-13,=-01101, B=17,,=10001;

Acc=1.10011 Be=0.10001
A-B=A+(-B)
Bee=1.01111
Ydld
Acc= N 1.10011
-Bee= 1.01111
Coc= 1 1.00010
Cop=1.11110

Overflow and Underflow

Example 4: Example 5:
A=214, B=171 A=—2610=—11010, B=—22,——10110,
Acc=0.10101 Bc=0.10001 Acc=1.00110 Bcc=1.01010
d
rdl
Acc—= 0.10101
Be= © 0.10001 Acc= 100110
Cee= 100110 Positiveoverflow Becem 1.01010 |
) Cec= 0.0011(Q nesative overflow

An addition overflows the result if the signs of the
addends are the same and the sign of the result differs
from the sign of the addends.

Binary Multiplication

11 1011 multiplicand
13 1101 multiplier
33 1011
11 0000 shifted
143 1011 multiplicands
1011

10001111 product

11 1011

13 1101

11 1011

33 1011
43 0000
1011

10001111

Multiplication algorithms

There are four multiplication algorithms:

Starting with the LSB of the multiplier shifting
the multiplicand left

Starting with the MSB of the multiplier shifting
multiplicand right

Starting with the LSB of the multiplier shifting
partial products right

Starting with the MSB of the multiplier shifting
partial products left

Multiplication in Signed-Magnitude System

Multiplication of signed numbers can be
accomplished using unsigned multiplication.

Steps:

1. Use XOR function to determine the product
sign Sg X @ Sg Y=Sg P

2. Perform an unsigned multiplication of the
magnitudes.

3. Convert the result to two’s complement
system (if the sign is negative).

Example 1: Algorithm 1
A=-10 B=13
Acc=10110 B=01101

1. 180=1
2. | A|=0.1010 |B|=0.1101
Multiplier Adder
00000000
O] 1010
00001010
011[0] 00000
00001010
001[1] 101000
00110010
000[1] 1010000
10000010

| C|=0.1000 0010
Ccc=1.01111110
C=-130

2)

Rg MD

Rg ML

+0,A<—,B—
+A«—, B—

+A<—, B—

“AND”

Adder

Example 2: Algorithm 2

A=-10 B=13

Acc=10110 B=01101

1. 1@20=1

2. | A|=0.1010 |B|=0.1101

Multiplier

Adder

(17101

[1Dh10
(0100

(100

00000000
01010

01010000
001010

01111000
0000000

01111000
00001010

10000010

| C|=0.1000 0010
Cec=1.01111110

C=-130

+A—_, We start with the first shift

TA— B
+0, B«

TA—, B

4)

Rg MD

“AND”

Rg ML

Adder

Binary division

For unsigned decimal and binary numbers we
mentally compare the reduced dividend with
multiples of the divisor to determine which
multiple of the shifted divisor to subtract.

110 - dividend
10— 119] 10 divisor

10 11
10
10

In the binary case the choice is somewhat simpler,
since the only two choices can exist: 0 and 1.

(dividend) 1101110 [10 | divisor
1010 1011 | ‘quetient)
00111
1010
1101
1010
01111
1010
01010
1010

0

* |f the remainder is positive, then the quotient bit is 1.
* |f the remainder is negative, then the quotient bit is O.

* |In case of negative remainder, we first reestablish the
last positive remainder and then subtract the shifted
divisor.

Division algorithms

1. With reestablishment of the remainder, and
shifting it left.

2. With reestablishment of the remainder and
shifting the divisor to right.

Using these algorithm we obtain the quotient bit in 2 steps if the remainder is

positive and in 3 steps if the remainder is negative. So this process is not very
convenient.

3. Without reestablishment of the remainder and
shifting it to left.

4. Without reestablishment of the remainder and
shifting the divisor to right.

Division with reestablishment of the remainder in signed-
magnitude system

Division of signed numbers can be accomplished using unsigned division.

If we have fixed-point fraction we can divide numbers if only |A|<|B|, because
otherwise we can obtain a integer part of a quotient and this is overflow.

1. Sign bit is computed as XOR of input sign bits.

2. Find absolute values of A and B (operands).

3. First subtraction |A|-|B] (is substituted with addition in two’s complemented
system).

4. a) If the remainder is positive, then operation is stopped and the pseudo sign bit is 1.
b) If the remainder is negative, |A|<|B| and the pseudo sign bit is 0.

5. The reestablishment of the dividend is done by addition of the divisor to the
remainder.

6. The dividend is shifted left.
7. Subtraction of the divisor.
a) If the remainder is positive the quotient bit is 1. The remainder is shifted left.

b) If the remainder is negative, the quotient bit is 0 and the reestablishment of the
last positive remainder is done. Then it is shifted left.

 The number of iterations depends on the required precision.
 The algorithm can be stopped when the remainder is 0.

E.g.:
A=1.0111
B=0.1101
1) 1P0=1
2)|A|=01001
|B|=01101
-|B|=10011

C=10101

RgC Adder
01001 |Al-|B|
10011
' 11100
01101 +[B|(reest. |Al)
01001 i
10010 Ad
10011 -|BJ
ol 00101 remainder
01010 Ad
10011 B
010 11101
01101 reest rem. +[Bj
01010 .
10100 Ad
10011 B
0101 00111
01110 Ad
10011 B
01011

00010

Division without reestablishment of the remainder in
signed-magnitude system

* neg.rem. R=2R ,-|B|

* reest. R=2R.;-|B|+|B|=2R,
* shift R, '=4R,

* subtracting R.’=4R ,-|B|

without reest.

* neg.rem. R=2R ,-|B|

* shift R'=4R ,-2|B]|

e addition R'=4R. ,-2|B|+|B|= 4R, ;-|B|

Division without reestablishment of the remainder in
sighed-magnitude system

Rule: After first control
subtraction, the sign of the remainder
IS examined.

If the sign is positive, the
remainder is shifted and then
subtraction of |B] is done.

If the sign is negative, the
remainder is shifted and the addition
of |[B| is done.

The quotient is obtained using the
same rules as in first algorithm.

Rg C | Adder
01001 |Al-/B|
10011
g. | 11100
11000 Ad
01101 +B|
01 | 00101 rem
01010 Ad
10011 -|B|
010 | 11101 rem
11010 Ad
01101 +B|
0101 | DD111 rem
01110 Ad
10011 -|B|
01011 | pooo1 rem

BCD arithmetic

e Two main differences between decimal and
binary arithmetic:

1. In decimal arithmetic, the carry out takes 10
1's from position, but when we add two 4 bit
binary strings, carry out takes 16.

2. In decimal arithmetic, the carry out appears
when the sum is larger than 9, for BCD it's 15.

These differences require the correction of the result in certain cases:

1. ai + bi +cin <9

In this case correction is not necessary.

2. 9{ﬂ5+bi+{?fu < 15

Decimal carry out appears, but binary not.

a=5| 0101

b;=8 | 1000

Ci1=1 1

14 | ------
1110 (illegal combination)

0110

0001 | 0100

D] &

3. a; + b;i +cip, > 15

0011
0100
0

0111(7)

Binary and decimal carry outs appear, the correction is still +6.

di—

¢i.1=0

16

0001
(1)

0110

Rules for BCD addition

1. If the sum is smaller or equal to 9 the addition
is done without correction.

2. If after addition illegal combination appears
or carry out occurs the correction is 6 (0110).

3. Carry out which appears after correction is
added to the next nibble.

E.g.:
A=57985
B=24593

E.g.. A=032891
B=067584

0101|0111} 1001 | 1000 | 0101
0010|0100 | 0101 | 1001 | 0011
0111|1011} 1111|0001 | 1000
0110| 0110|0110
1000 | 0010 | 0101 | O111 | 1000
8 2 5
0000 | 0011 | OO10 | 1000 1001 | 0001
0000 | 0110) 0111 0101 1000 | 0100
0000 | 1001 | 1001 | 1110 | 0001|0101
0110 | 0110
0001 | 0000 | 0000 | 0100 |O111]0101
1 0 0 4 7 5

Types of Shifts

* Logic shift

A logic shift is the shift of bits in a constant number of cells

(corresponding to a processor register — that’s why the
number of bits is limited to a constant); in case of shifting left,
we loose the MSB, when shifting right we loose the LSB, the
blank position is filled with a zero value.

Example1:
A=38 A=00100110

SHL=01001100 (761¢)
SHR=00010011(19¢)

Arithmetic shift

In this shift the sign bit is not changed. The digit next to the sign is lost if
the number is shifted left and the sign bit is doubled if the number is
shifted right. In this case the LSB is lost.

Example 2:
A..=00010101 (21,,)

SAL=00101010 (42,,)

B=11011111 (-33,,)

 SAL=10111110 (-66,,)
e SAR=11101111 (-17,,)

Round shift

No bit is lost in this case, because MSB and LSB
are connected so that each bit moved out of the
number is displaced on the other blank side of it.

Example 3:
A=11010010

* ROL=10100101
* ROR=01101001

