Data representation

Binary numbers can be represented in two forms:

- fixed-point representation
- floating - point representation

We also need to represent negative and positive numbers for computations. The signed binary numbers can be represented in 3 systems:

- signed - magnitude system
- one's complement system
- two's complement system

Binary Numbers Representation

Fixed-point reprezentation

Unsigned numbers

1. Integer numbers

$$
1 \leq N \leq 2^{n}-1
$$

Decimal point is considered to be after the rightmost digit, but is not stored in the register.
2. Fractional numbers

$$
2^{-m} \leq N \leq 1-2^{-m}
$$

Signed numbers

The signed binary numbers can be represented in 3 systems:

- signed - magnitude system (a direct code)
- one's complement system (an indirect code)
- two's complement system (a complement code) In all these systems an extra bit position is used to represent the sign.
The MSB of a bit string is used as the sign
(0=plus, 1=minus).

Signed - magnitude system (Direct Code)

Integers $N=\left\{\begin{array}{l}0 b_{n-1} b_{n-2} b_{n-3} \ldots b_{1} b_{0} ; N \geq 0 \\ 1 b_{n-1} b_{n-2} b_{n-3} \ldots b_{1} b_{0} ; N<0\end{array}\right.$

n	$\mathrm{n}-1$	$\mathrm{n}-2$	$\mathrm{n}-3$	1		0
sg	$\mathrm{b}_{\mathrm{n}-1}$	$\mathrm{~b}_{\mathrm{n}-2}$	$\mathrm{~b}_{\mathrm{n}-3}$	\ldots	$\mathrm{~b}_{1}$	$\mathrm{~b}_{0 .}$
binary point						
MSB	LSB					

Example: for 8 bits
$\mathrm{N}=-17_{10} \quad \mathrm{~N}_{\mathrm{DC}}=10010001 \quad-\left(2^{\mathrm{n}}-1\right) \leq \mathrm{N}_{\mathrm{DC}} \leq 2^{\mathrm{n}}-1$
$\mathrm{N}=+40_{10} \quad \mathrm{~N}_{\mathrm{DC}}=00101000$

	N	$\mathrm{n}-1$	$\mathrm{n}-2$	\ldots	1	0	
The largest value	0	1	1	1	1	1.	$2^{\mathrm{n}}-1$
The lowest value	1	1	1	1	1	1.	$-\left(2^{\mathrm{n}}-1\right)$

Fractionals

Two's complement system (Complement Code) $\mathrm{r}^{\mathrm{n}}-\mathrm{N}$.

Integers

$\mathrm{N}_{\mathrm{CC}}=\left\{\begin{array}{l}0 b_{n-1} b_{n-2} b_{n-3} \ldots b_{1} b_{0} ; \mathrm{N} \geq 0 \\ 1 \bar{b}_{n-1} b_{n-2} b_{n-3} \ldots \overline{b_{1}}\left(\overline{b_{0}}+1\right) ; \mathrm{N}<0\end{array}\right.$
For positive numbers the complemented code representation corresponds to the direct code. For negative numbers the CC is obtained by complementing and adding 1 to the result.
Example:
$-1 \quad \mathrm{~N}_{\mathrm{CD}}=10000001 \quad \mathrm{~N}_{\mathrm{CC}}=11111111$
$+35 \quad \mathrm{~N}_{\mathrm{CD}}=00100011 \quad \mathrm{~N}_{\mathrm{CC}}=00100011$
-35 $\quad \mathrm{N}_{\mathrm{CD}}=10100011 \quad \mathrm{~N}_{\mathrm{CC}}=11011101$

	N	$\mathrm{n}-1$	$\mathrm{n}-2$	\ldots	1	0	
The largest value	0	1	1	1	1	1.	$2^{\mathrm{n}}-1$
The lowest value	1	0	0	0	0	0.	-2^{n}

$-2^{\mathrm{n}} \leq \mathrm{N}_{\mathrm{CC}} \leq 2^{\mathrm{n}-1}$

For a fractional number:

	0	-1	-2	\ldots	$-\mathrm{m}+1$	-m	
The largest value	0.	1	1	1	1	1	$1-2-\mathrm{m}$
The lowest value	1.	0	0	0	0	0	-1

$-1 \leq \mathrm{N}_{\mathrm{CC}} \leq 1-2^{-\mathrm{m}}$

Two's complement system (Complement Code)

Examples.
76
-123
127
-127
-128
+0
-0

One's complement system (Indirect Code) (rn-1)-N.

$\mathrm{N}_{\mathrm{IC}}=\left\{\begin{array}{lll}0 & b_{n-1} b_{n-2} b_{n-3} \ldots b_{1} b_{0} & ; \mathrm{N} \geq 0 \\ 1 & b_{n-1}, \frac{b_{n-2}}{b_{n-3}} \ldots \bar{b}_{1}, \bar{b}_{0} ; & \mathrm{N}<0\end{array}\right.$
Example:
-35 $\quad \mathrm{N}_{\mathrm{CD}}=10100011 \quad \mathrm{~N}_{\mathrm{IC}}=11011100$
There are two representations of 0 - the positive one (0000) and the negative one (1111). For integers the range of numbers we can represent is:
$-\left(2^{\mathrm{n}}-1\right) \leq \mathrm{N}_{\mathrm{IC}} \leq 2^{\mathrm{n}}-1$

The largest value	0	1	1	1	1
The lowest value	1	0	0	0	0

For a fractional number:
$-\left(1-2^{m}\right) \leq \mathrm{N}_{\mathrm{IC}} \leq 1-2^{\mathrm{m}}$

Exercises

- Give the value of $88,0,1,127$, and 255 in 8 -bit unsigned representation.
- Give the value of $+88,-88,-1,0,+1,-128$, and +127 in 8 -bit 2 's complement signed representation.
- Determine the decimal value of numbers 10010110 unsigned 10010110 2's complement

Floating-Point Representation

IEEE numbers are stored using a kind of scientific notation.

$$
\pm \text { mantissa * } 2^{\text {exponent }}
$$

We can represent floating-point numbers with three binary fields: a sign bit s, an exponent field e, and a fraction field f .

s	e	f

The IEEE 754 standard defines several different precisions.

- Single precision numbers include an 8-bit exponent field and a 23-bit fraction, for a total of 32 bits.
- Double precision numbers have an 11-bit exponent field and a 52-bit fraction, for a total of 64 bits.

Mantissa

s	e	f

\square There are many ways to write a number in scientific notation, but there is always a unique normalized representation, with exactly one non-zero digit to the left of the point.

$$
\begin{gathered}
0.232 \times 10^{3}=23.2 \times 10^{1}=2.32 * 10^{2}=\ldots \\
01001=1.001 \times 2^{3}=\ldots
\end{gathered}
$$

What's the normalized representation of 00101101.101?

$$
\begin{aligned}
& 00101101.101 \\
& =1.01101101 \times 2^{5}
\end{aligned}
$$

What's the normalized representation of 0.0001101001110 ?

$$
0.0001101001110
$$

$$
=1.110100111 \times 2^{-4}
$$

Mantissa

\square
\square There are many ways to write a number in scientific notation, but there is always a unique normalized representation, with exactly one non-zero digit to the left of the point.

$$
\begin{gathered}
0.232 \times 10^{3}=23.2 \times 10^{1}=2.32 * 10^{2}=\ldots \\
01001=1.001 \times 2^{3}=\ldots
\end{gathered}
$$

\square The field f contains a binary fraction.
The actual mantissa of the floating-point value is $(1+f)$.

- In other words, there is an implicit 1 to the left of the binary point.
- For example, if f is $01101 \ldots$, the mantissa would be $1.01101 \ldots$
\square A side effect is that we get a little more precision: there are 24 bits in the mantissa, but we only need to store 23 of them.
\square But, what about value 0?

Exponent

There are special cases that require encodings

- Infinities (overflow)
- NAN (divide by zero)
- For example:
- Single-precision: 8 bits in $\mathrm{e} \rightarrow 256$ codes; 11111111 reserved for special cases $\rightarrow \mathbf{2 5 5}$ codes; one code (00000000) for zero $\rightarrow \mathbf{2 5 4}$ codes; need both positive and negative exponents \rightarrow half positives (127), and half negatives (127)
- Double-precision: 11 bits in $\mathrm{e} \rightarrow 2048$ codes; 111... 1 reserved for special cases $\rightarrow 2047$ codes; one code for zero $\rightarrow 2046$ codes; need both positive and negative exponents \rightarrow half positives (1023), and half negatives (1023)

Exponent

\square

- The e field represents the exponent as a biased number.
- It contains the actual exponent plus 127 for single precision, or the actual exponent plus 1023 in double precision.
- This converts all single-precision exponents from -126 to +127 into unsigned numbers from 1 to 254, and all double-precision exponents from -1022 to +1023 into unsigned numbers from 1 to 2046.
- Two examples with single-precision numbers are shown below.
- If the exponent is 4 , the e field will be $4+127=131$ (10000011 \mathbf{N}_{2}).
- If e contains $01011101\left(93_{10}\right)$, the actual exponent is $93-127=-$ 34.
- Storing a biased exponent means we can compare IEEE values as if they were signed integers.

Mapping Between e and Actual Exponent

e		Actual Exponent
00000000		Reserved
00000001	$1-127=-126$	-126_{10}
00000010	$2-127=-125$	-125_{10}
\ldots		\ldots
01111111		0_{10}
\ldots		\ldots
11111110	$254-127=127$	127_{10}
11111111		Reserved

Special Values (single-precision)

E	F	meaning	Notes
00000000	$0 \ldots 0$	0	+0.0 and -0.0
00000000	$\mathrm{X} \ldots \mathrm{X}$	Valid number	Unnormalized $=(-1)^{5} \times 2^{-122} \times(0 . \mathrm{F})$
11111111	$0 \ldots 0$	Infinity	
11111111	$\mathrm{XX} \ldots$	Not a Number	

Converting an IEEE 754 number to decimal

\square The decimal value of an IEEE number is given by the formula:

$$
(1-2 s) *(1+f) * 2^{e-\text { bias }}
$$

- Here, the s, f and e fields are assumed to be in decimal.
$-(1-2 s)$ is 1 or -1 , depending on whether the sign bit is 0 or 1.
- We add an implicit 1 to the fraction field f, as mentioned earlier.
- Again, the bias is either 127 or 1023, for single or double precision.

Example IEEE-decimal conversion

\square Let's find the decimal value of the following IEEE number.

$$
101111100 \quad 11000000000000000000000
$$

] First convert each individual field to decimal.

- The sign bit \mathbf{s} is 1.
- The e field contains $01111100=124_{10}$.
- The mantissa is $0.11000 \ldots=0.75_{10}$.
\square Then just plug these decimal values of s, e and f into our formula.

$$
(1-2 s) *(1+f) * 2^{e-b i a s}
$$

\square This gives us $(1-2) *(1+0.75) * 2^{124-127}=\left(-1.75 * 2^{-3}\right)=-0.21875$.

Converting a decimal number to IEEE 754

What is the single-precision representation of 347.625 ?

1. First convert the number to binary: $347.625=101011011.101_{2}$.
2. Normalize the number by shifting the binary point until there is a single 1 to the left:

$$
101011011.101 \times 2^{0}=1.01011011101 \times 2^{8}
$$

3. The bits to the right of the binary point comprise the fractional field f.
4. The number of times you shifted gives the exponent. The field e should contain: exponent + 127.
5. Sign bit: 0 if positive, 1 if negative.

Exercise

What is the single-precision representation of 639.6875

$$
\begin{aligned}
& 639.6875 \quad=1001111111.1011_{2} \\
& \\
& =1.0011111111011 x \\
& s=0 \\
& e=9+127=136=10001000 \\
& f=0011111111011
\end{aligned}
$$

$$
=1.0011111111011 \times 2^{9}
$$

The single-precision representation is:
01000100000111111110110000000000

