# Binary numbers reprezentation



Binary numbers can be represented in two forms:

- fixed point representation
- floating point representation

We also need to represent negative and positive numbers for computations. The signed binary numbers can be represented in 3 systems:

- signed magnitude system
- one's complement system
- two's complement system

# Fixed – point representation

Unsigned integers

|     | 128 | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
|-----|-----|----|----|----|---|---|---|---|
| 34  |     |    |    |    |   |   |   |   |
| 102 |     |    |    |    |   |   |   |   |
| 255 |     |    |    |    |   |   |   |   |

Unsigned fractionals

|       |    | 0.5 | 0.25 | 0.125 | 0.0625 | 0,03125 |  |
|-------|----|-----|------|-------|--------|---------|--|
| 0,75  | 0. |     |      |       |        |         |  |
| 0.825 | 0. |     |      |       |        |         |  |
| 0,84  | 0. |     |      |       |        |         |  |



# Fixed – point representation

#### Signed numbers

- signed magnitude system
- one's complement system
- two's complement system

In all these systems an extra bit position is used to represent the sign. That's why the MSB of a bit string is used as the sign (0=plus, 1=minus).



## Signed – magnitude system (Direct code)

$$N_{CC} = \begin{cases} 0 & b_{n-1}b_{n-2}b_{n-3}...b_1b_0 \\ 1 & \overline{b_{n-1}b_{n-2}b_{n-2}b_{n-3}}...\overline{b_1}(\overline{b_0} + 1); N \le 0 \end{cases}$$

|      | Sg | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
|------|----|----|----|----|---|---|---|---|
| 34   |    |    |    |    |   |   |   |   |
| 102  |    |    |    |    |   |   |   |   |
| -102 |    |    |    |    |   |   |   |   |
| 127  |    |    |    |    |   |   |   |   |
| -127 |    |    |    |    |   |   |   |   |
| 0+   |    |    |    |    |   |   |   |   |
| 0-   |    |    |    |    |   |   |   |   |

$$-(2^{n}-1) \le N_{DC} \le 2^{n}-1$$

$$-(1-2^{-m}) \le N_{DC} \le (1-2^{-m})$$



## One's complement system (Inverse code)

$$N_{IC} = \begin{cases} 0 & b_{n-1}b_{n-2}b_{n-3}...b_1b_0 & ; N \ge 0 \\ 1 & \overline{b_{n-1}}\overline{b_{n-2}}\overline{b_{n-3}}...\overline{b_1}\overline{b_0} & ; N < 0 \end{cases}$$

$$(r^{n}-1)-N.$$

|      | Sg | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
|------|----|----|----|----|---|---|---|---|
| 34   |    |    |    |    |   |   |   |   |
| 102  |    |    |    |    |   |   |   |   |
| -102 |    |    |    |    |   |   |   |   |
| 127  |    |    |    |    |   |   |   |   |
| -127 |    |    |    |    |   |   |   |   |
| 0+   |    |    |    |    |   |   |   |   |
| 0-   |    |    |    |    |   |   |   |   |

$$-(2^{n}-1) \le N_{DC} \le 2^{n}-1$$

$$-(1-2^{-m}) \le N_{DC} \le (1-2^{-m})$$



## Two's complement system (Complement code)

$$\mathbf{N}_{CC} = \begin{cases} 0 \ b_{n-1} b_{n-2} b_{n-3} ... b_1 b_0 \ ; \ \mathbf{N} \ge 0 \\ 1 \ \overline{b_{n-1}} \overline{b_{n-2}} \overline{b_{n-2}} \overline{b_{n-3}} ... \overline{b_1} (\overline{b_0} + 1); \ \mathbf{N} \le 0 \end{cases}$$

rn-N

|      | Sg | 64 | 32 | 16 | 8 | 4 | 2 | 1 |
|------|----|----|----|----|---|---|---|---|
| 34   |    |    |    |    |   |   |   |   |
| 102  |    |    |    |    |   |   |   |   |
| -102 |    |    |    |    |   |   |   |   |
| 127  |    |    |    |    |   |   |   |   |
| -127 |    |    |    |    |   |   |   |   |
| 0+   |    |    |    |    |   |   |   |   |
| 0-   |    |    |    |    |   |   |   |   |

$$-2^n \le N_{CC} \le 2^n$$

$$-1 \le N_{CC} \le 1-2^{-m}$$







