Binary numbers reprezentation

Binary numbers can be represented in two forms:

- fixed - point representation
- floating - point representation

We also need to represent negative and positive numbers for computations. The signed binary numbers can be represented in 3 systems:

- signed - magnitude system
- one's complement system
- two's complement system

Fixed - point representation

- Unsigned integers

	128	64	32	16	8	4	2	1
34								
102								
255								

- Unsigned fractionals

Fixed - point representation

Signed numbers

- signed - magnitude system
- one's complement system
- two's complement system

In all these systems an extra bit position is used to represent the sign. That's why the MSB of a bit string is used as the sign ($0=$ plus, $1=$ minus).

Signed - magnitude system (Direct code)

	Sg	64	32	16	8	4	2	1
34								
102								
-102								
127								
-127								
$0+$								
$0-$								
$-\left(2^{\mathrm{n}}-1\right) \leq \mathrm{N}_{\mathrm{DC}} \leq 2^{\mathrm{n}}-1$			$-\left(1-2^{-\mathrm{m}}\right) \leq \mathrm{N}_{\mathrm{DC}} \leq\left(1-2^{-\mathrm{m}}\right)$					

One's complement system (Inverse code)
$\mathrm{N}_{\mathrm{IC}}=\left\{\begin{array}{lll}0 & b_{n-1} b_{n-2} b_{n-3} \ldots b_{1} b_{0} & ; \mathrm{N} \geq 0 \\ 1 & \overline{b_{n-1}} \frac{b_{n-2}}{b_{n-3}} \ldots b_{1} & \frac{b_{0}}{}\end{array} ; \mathrm{N}<0\right.$
$\left(\mathrm{r}^{\mathrm{n}}-1\right)-\mathrm{N}$.

	Sg	64	32	16	8	4	2	1
34								
102								
-102								
127								
-127								
$0+$								
$0-$								
$-\left(2^{\mathrm{n}}-1\right) \leq \mathrm{N}_{\mathrm{DC}} \leq 2^{\mathrm{n}}-1$				$-\left(1-2^{-\mathrm{m}}\right) \leq \mathrm{N}_{\mathrm{DC}} \leq\left(1-2^{-\mathrm{m}}\right)$				

Two's complement system (Complement code)

$$
\mathrm{N}_{\mathrm{CC}}=\left\{\begin{array}{l}
0 b_{n-1} b_{n-2} b_{n-3} \ldots b_{1} b_{0} ; \mathrm{N} \geq 0 \\
1 \overline{b_{n-1}} b_{n-2} b_{n-3} \ldots . . \bar{b}_{1}\left(\overline{b_{0}}+1\right) ; \mathrm{N}<0
\end{array}\right.
$$

$$
\mathrm{r}^{\mathrm{n}}-\mathrm{N}
$$

	Sg	64	32	16	8	4	2	1
34								
102								
-102								
127								
-127								
$0+$								
$0-$								

$-2^{\mathrm{n}} \leq \mathrm{N}_{\mathrm{CC}} \leq 2^{\mathrm{n}}$
$-1 \leq \mathrm{N}_{\mathrm{CC}} \leq 1-2^{-\mathrm{m}}$

