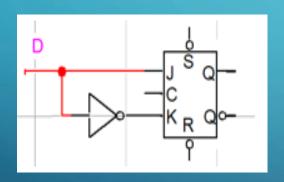
VII СИНТЕЗ ПОСЛЕДОВАТЕЛЬНОСТНЫХ СХЕМ

ТЕМА 7.2 РЕГИСТРЫ

Регистры это ПЛС предназначеные для хранения и обработки двоичных слов.


Основные компоненты любого регистра - это триггеры.

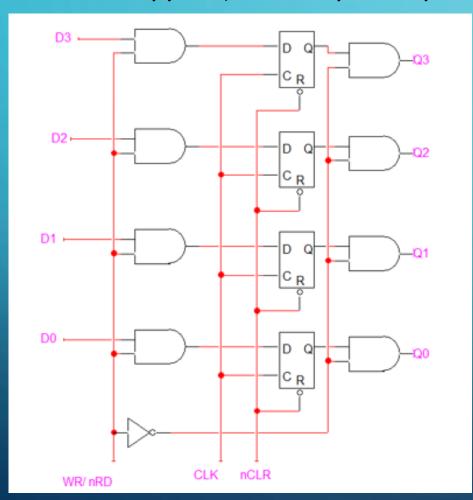
Регистры также содержат КЛС для управления триггерами.

Длина регистров определяется количеством триггеров, из которых они состоят.

Регистр с *п* триггерами может хранить n-битное двоичное слово.

Регистры состоят из триггеров типа D или триггеров JK, RS, которые работают в режиме триггеров D.

В зависимости от выполняемых функций регистры делятся на следующие категории:


- 1. *Параллельные регистры*. Информация должна записываться в эти регистры и считываться параллельно.
- 2. Последовательные регистры или регистры сдвига. В этих регистрах информация вводится и считывается последовательно, бит за битом. Эти регистры могут сдвигать двоичные слова влево или вправо.
- 3. Параллельно-последовательные или последовательно-параллельные регистры, в зависимости от того, как считывается или записывается двоичное слово.

Существуют следующие основные типы регистров:

- **SISO** (Serial Input Serial Output);
- **SIPO** (Serial Input Parallel Output);
- **PISO** (Parallel Input Serial Output);
- **PIPO** (Parallel Input Parallel Output).

ПАРАЛЛЕЛЬНЫЕ РЕГИСТРЫ

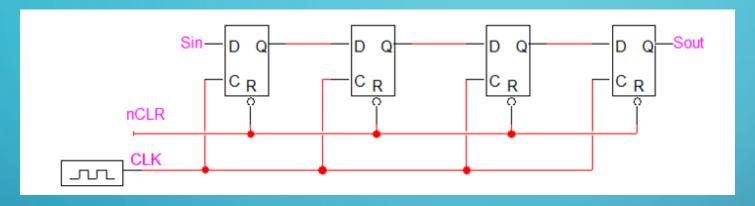
Основная функция этих регистров - хранить двоичные слова.

Загрузка данных при WR/ nRD=1 (Write/n Read) Паралельное считывание данных приWR/ nRD=0

Вход сброса CLR (clear), активный по логическому нулю служит для асинхронной установки в 0 всех *п* триггеров.

ПОСЛЕДОВАТЕЛЬНЫЕ РЕГИСТРЫ (СДВИГАЮЩИЕ)

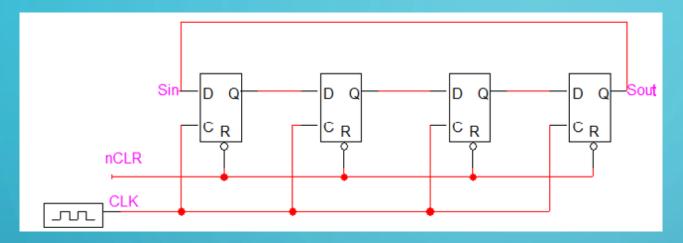
Сдвиг двоичных слов бывает 3-х видов:

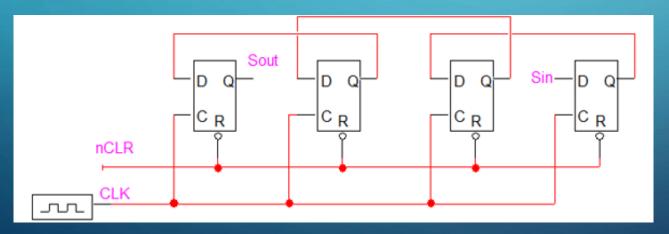

- логический
- арифметический
- циклический.

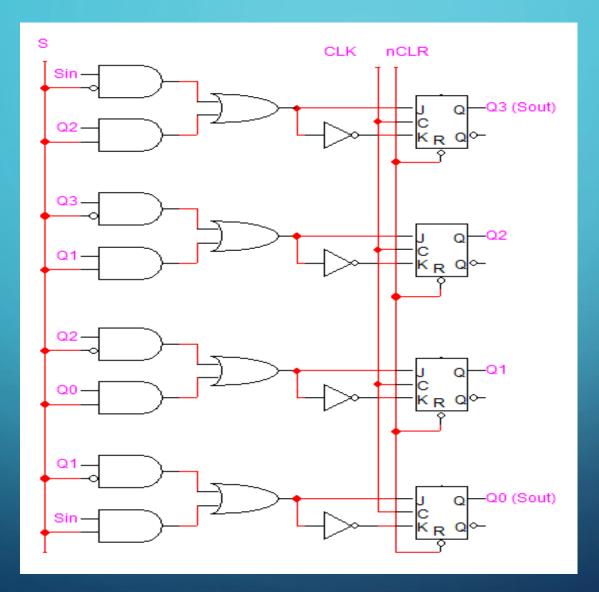
В регистрах сдвига двоичные слова можно^


- вводить последовательно через один из входов, обозначенным S_{IN} (Serial Input),
- сдвигать двоичное слово вправо или влево
- считывать последовательно только на одном из выходов, обозначенных S_{OUT} (Serial Output).

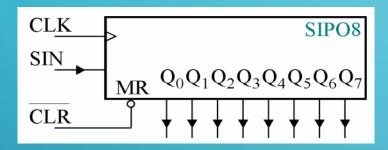
РЕГИСТР СО СДВИГОМ ВПРАВО


4-битный регистр со сдвигом вправо (логический сдвиг)

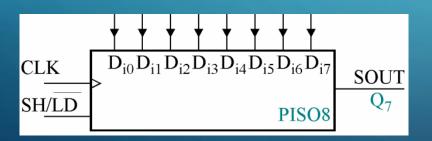

4-битный регистр со сдвигом вправо (арифметический сдвиг)


4-битный регистр со сдвигом вправо (циклический сдвиг)

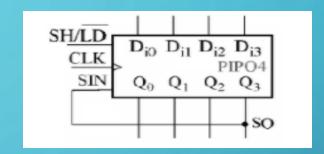
4-битный регистр со сдвигом влево (логический сдвиг)



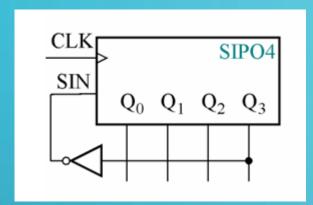
[©] РЕВЕРСИВНЫЙ РЕГИСТР СДВИГА



ПРИМЕНЕНИЯ РЕГИСТРОВ


Преобразование последовательного двоичного слова в параллельное

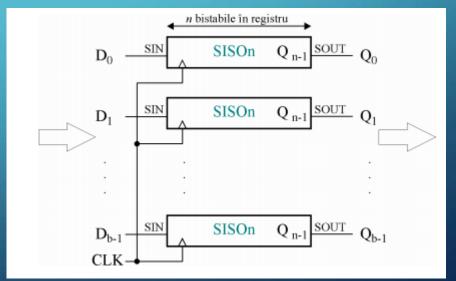
Преобразование параллельного двоичного слова в последовательное



Кольцевой счетчик

Основное применение - последовательная генерация управляющих сигналов, предназначенных для последовательного переключения *п* цифровых схем. Счетчик использует комбинированный регистр с параллельной загрузкой и чтением (PIPO), снабженный последовательным вводом и выводом. При параллельной загрузке регистр (кольцевой счетчик) всегда инициализируется двоичным словом из *п* битов, на одном бите записывается логическая единица, на остальных – О. Параллельные выходы необходимы для получения управляющих сигналов без необходимости в декодере.

СЧЕТЧИК JOHNSON


Nr. tact	Q3	Q2	Q1	Q0
Inițializare	0	0	0	0
1	0	0	0	1
2	0	0	1	1
3	0	1	1	1
4	1	1	1	1
5	1	1	1	0
6	1	1	0	0
7	1	0	0	0
8	0	0	0	0
9	0	0	0	1
10	0	0	1	1

Память FIFO и LIFO

Они представляют собой временную память, организованную как n двоичные слова по m бит каждое, состоящих из m регистров последовательного сдвига SISO по n бит каждый.

FIFO – First In First Out (первое написанное слово - первое прочитанное).

LIFO - Last In First Out (последнее написанное слово - первое прочитанное).

СИНТЕЗ РЕГИСТРОВ

Для выбора режима функционирования используются управляющие сигналы

Количество управляющих сигналов n зависит от количества рабочих режимов, и определяется согласно формуле $n = \log 2m$ [.

Выполнить синтез 4-разрядного регистра который имеет следующие режимы работы:

- 1. Хранение
- 2. Логический сдвиг влево
- 3. Логический сдвиг вправо
- 4. Параллельная загрузка

Используем 2 управляющих сигнала s1 и s0

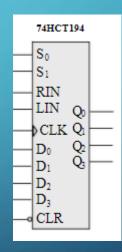
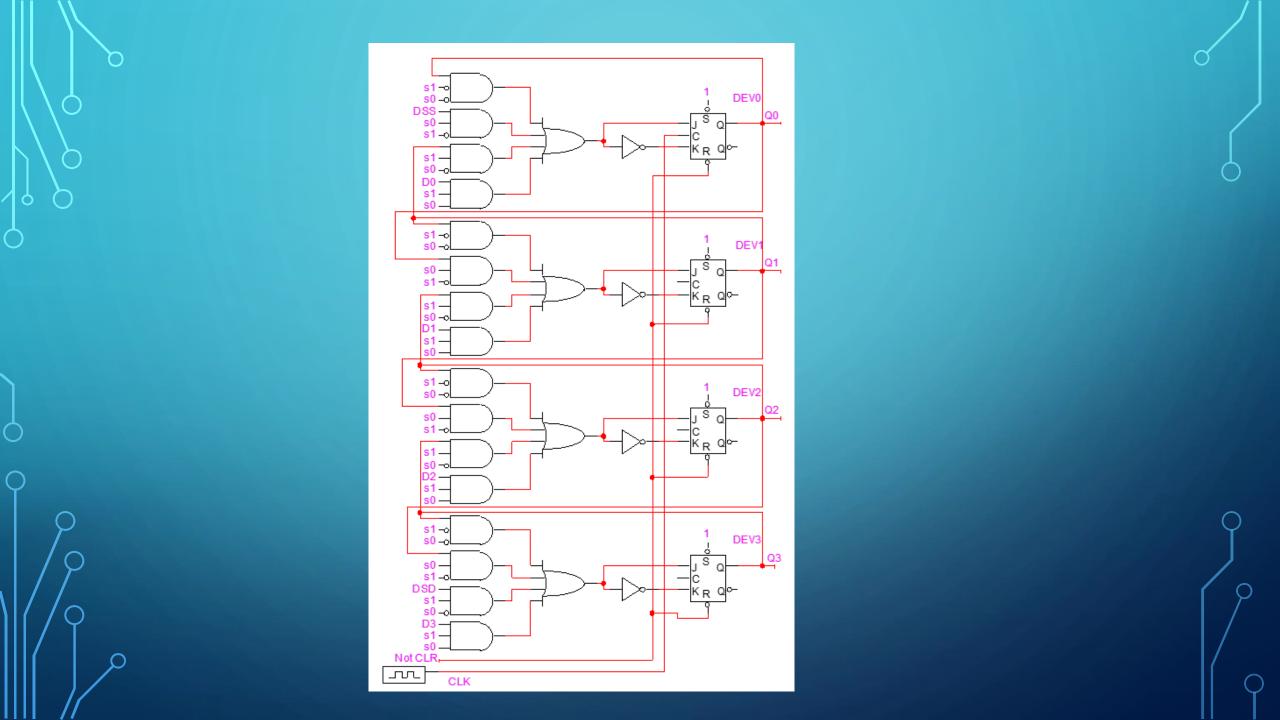



Таблица переходов для универсального регистра:

Режим работы	Сигналы		Выходы					
	управления							
	S1	S0	Q3	Q2	Q1	Q0	t	
Сохранение	0	0	Q_3	Q_2	Q_{l}	Q0	41.1	
Сдвиг влево	0	1	Q_2	Q_{l}	Q0	DSS	t+1	
Сдвиг вправо	1	0	DSD	Q_3	Q_2	Q_{l}		
Параллельная загрузка	1	1	D_3	D_2	D_l	D_0		

Логические формулы:

$$\begin{split} J_3 &= \overline{K}_3 = \overline{s}_1 \overline{s}_0 Q_3 \vee \overline{s}_1 s_0 Q_2 \vee s_1 \overline{s}_0 DSD \vee s_1 s_0 D_3, \\ J_2 &= \overline{K}_2 = \overline{s}_1 \overline{s}_0 Q_2 \vee \overline{s}_1 s_0 Q_1 \vee s_1 \overline{s}_0 Q_3 \vee s_1 s_0 D_2, \\ J_1 &= \overline{K}_1 = \overline{s}_1 \overline{s}_0 Q_1 \vee \overline{s}_1 s_0 Q_0 \vee s_1 \overline{s}_0 Q_2 \vee s_1 s_0 D_1, \\ J_0 &= \overline{K}_0 = \overline{s}_1 \overline{s}_0 Q_0 \vee \overline{s}_1 s_0 DSS \vee s_1 \overline{s}_0 Q_1 \vee s_1 s_0 D_0. \end{split}$$

