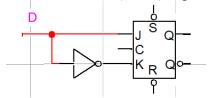
# Регистры

Регистры входят в категорию ПЛС и предназначены для хранения и обработки двоичных слов.


Основные компоненты любого регистра - это триггеры. Регистры также содержат комбинационные схемы для управления триггерами.

Длина регистров определяется количеством триггеров, из которых они состоят.

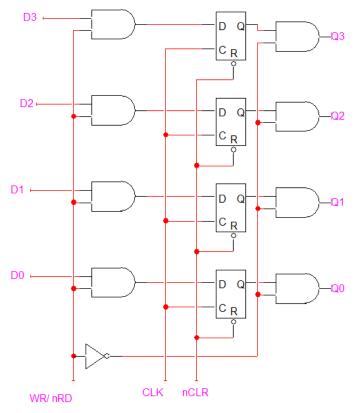
Регистр с n триггерами может хранить n-битное двоичное слово.

Регистры состоят из триггеров типа D или триггеров JK, RS, которые работают в режиме триггеров D.

Например, для работы триггера JK или RS в режиме триггера D достаточно соединить входы J и K (R и S) через инвертор.



В зависимости от выполняемых функций регистры делятся на следующие категории:


- 1. *Параллельные регистры*. Информация должна записываться в эти регистры и считываться параллельно.
- 2. *Последовательные регистры или регистры сдвига*. В этих регистрах информация вводится и считывается последовательно, бит за битом. Эти регистры могут сдвигать двоичные слова влево или вправо.
- 3. *Параллельно-последовательные* или *последовательно-параллельные* регистры, в зависимости от того, как считывается или записывается двоичное слово.

Существуют следующие основные типы регистров:

- *SISO* (Serial Input Serial Output, последовательный вход последовательный выход); со сдвигом информации вправо, со сдвигом информации влево, двунаправленный
- *SIPO* (Serial Input Parallel Output, последовательный ввод параллельный вывод);
- **PISO** (Parallel Input Serial Output, параллельный вход последовательный выход);
  - *PIPO* (Parallel Input Parallel Output, параллельный ввод параллельный вывод).

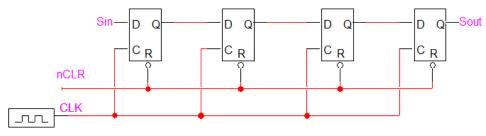
#### Параллельные регистры.

Основная функция этих регистров - хранить двоичные слова. Пример. 4-битный параллельный регистр

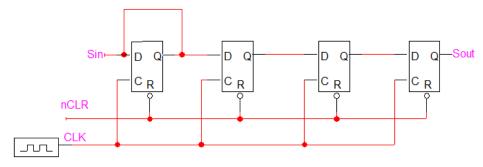


В режиме параллельной загрузки слово для ввода подается на входы данных D3, D2, D1 и D0 — порт ввода. Данные загружаются в регистр, когда подается общий для всех триггеров тактовый сигнал CLK и сигнал записи WR/nRD = 1 (запись / n чтение). Вход сброса CLR (clear), активный по логическому нулю, присутствует в большинстве регистров и служит для асинхронной установки в 0 всех n триггеров. Введенное слово доступно на выходах Q3, Q2, Q1 и Q0 - порт вывода. Для параллельного чтения данных применяется сигнал WR / nRD = 0.

# Последовательные регистры (сдвигающие)

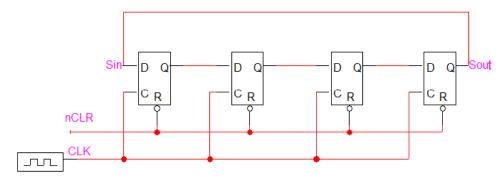

В регистрах сдвига двоичные слова можно вводить последовательно через один из входов, обозначенным  $S_{\rm IN}$  (последовательный ввод), сдвигать двоичное слово вправо или влево и, соответственно, считывать последовательно только на одном из выходов, обозначенных  $S_{\rm OUT}$  (последовательный выход). Вход сброса nCLR (clear), активный по логическому нулю служит для асинхронной установки в 0 всех n триггеров.

Сдвиг двоичных слов бывает 3-х видов: логический, арифметический и циклический.

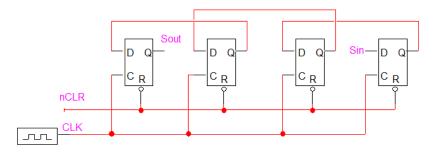

# Регистр со сдвигом вправо

Этот тип регистра состоит из n триггеров типа D. Вход k+1 триггера соединен с выходом Q k-триггера. Информация перемещается слева направо. Используемые D-триггеры являются двухтактными триггерами (flip-flop) и переключаются на заднем фронте тактового сигнала.

# 4-битный регистр со сдвигом вправо (логический сдвиг)

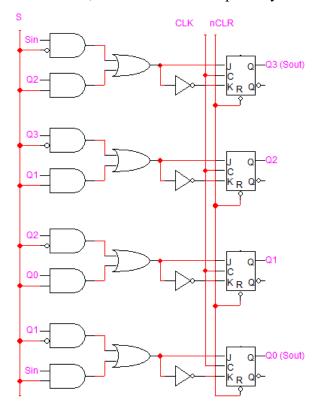



# 4-битный регистр со сдвигом вправо (арифметический сдвиг)




# 4-битный регистр со сдвигом вправо (циклический сдвиг)

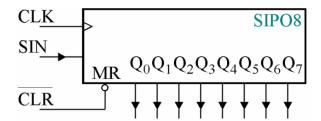
N-битовое слово, записываемое в течении п тактов через вход Sin, последовательно побитно теряется на выходе Sout в течении следующих п тактов. Однако, если выход Sout подключить к входу Sin, получается кольцевая структура или структура регистров с циклическим сдвигом. В таком регистре первоначально введенное слово циркулирует внутри регистра.




# 4-битный регистр со сдвигом влево (логический сдвиг)

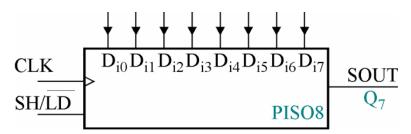


Регистр, способный сдвигать данные как влево, так и вправо, называется реверсивным регистром сдвига. Этот регистр можно использовать не только для хранения двоичного


слова, но и для его обработки, потому что сдвиг вправо на i позиций эквивалентно операции деления слова на  $2^i$ , а сдвиг влево - операции умножения на  $2^i$ .

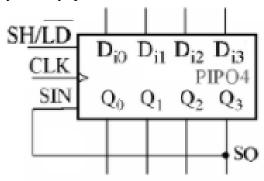


# Применения регистров


1. Преобразование последовательного двоичного слова в параллельное.

Последовательно-параллельное преобразование полезно для увеличения количества выходов в микроконтроллерах, особенно для микроконтроллера с небольшим количеством выходов. Используемый регистр - SIPO.

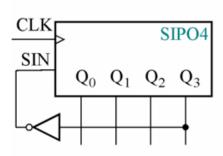



2. Преобразование параллельного двоичного слова в последовательное.

Используемый регистр - PISO. Параллельно-последовательное преобразование полезно для увеличения количества входов в микроконтроллерной системе.



#### 3. Кольцевой счетчик


Основное применение - последовательная генерация управляющих сигналов, предназначенных для последовательного переключения п цифровых схем. Счетчик использует комбинированный регистр с параллельной загрузкой и чтением (PIPO), снабженный последовательным вводом и выводом. При параллельной загрузке регистр (кольцевой счетчик) всегда инициализируется двоичным словом из п битов, на одном бите записывается логическая единица, на остальных — 0. Параллельные выходы необходимы для получения управляющих сигналов без необходимости в декодере.



#### 4. Счетчик Johnson

В этом варианте используется более простой регистр (последовательный ввод, параллельный вывод, SIPO).

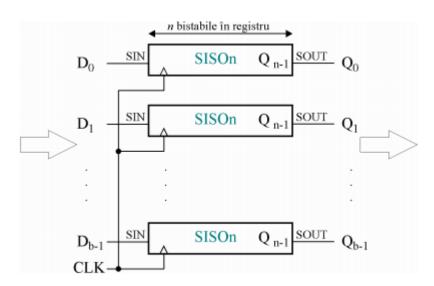
Инициализация счетчика выполняется подачей импульса сброса. Количество различных состояний схемы в случае полного рабочего цикла 2n.



| Nr. tact     | Q3 | Q2 | Q1 | Q0 |
|--------------|----|----|----|----|
| Inițializare | 0  | 0  | 0  | 0  |
| 1            | 0  | 0  | 0  | 1  |
| 2            | 0  | 0  | 1  | 1  |
| 3            | 0  | 1  | 1  | 1  |
| 4            | 1  | 1  | 1  | 1  |
| 5            | 1  | 1  | 1  | 0  |
| 6            | 1  | 1  | 0  | 0  |
| 7            | 1  | 0  | 0  | 0  |
| 8            | 0  | 0  | 0  | 0  |
| 9            | 0  | 0  | 0  | 1  |
| 10           | 0  | 0  | 1  | 1  |
|              |    |    |    |    |
|              |    |    |    |    |

# 5. Память FIFO и LIFO

Они представляют собой временную память, организованную как n двоичные слова по m бит каждое, состоящих из m регистров последовательного сдвига SISO по n бит каждый.


FIFO – First In First Out (первое написанное слово - первое прочитанное). LIFO - Last In First Out (последнее написанное слово - первое прочитанное).

В зависимости от памяти сдвиг может быть односторонним или реверсивным. Если сдвиг происходит в обоих направлениях, в регистре должен присутствовать вход, указывающая направление сдвига.

#### Память FIFO

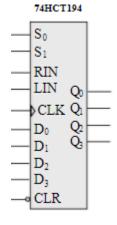
Запись двоичных слов из b битов в память выполняется параллельно на b последовательных входах при подачи сигнала синхронизации и сдвига регистров вправо. Считывание также выполняется параллельно на последовательных выходах, при подачи сигнала синхронизации. Память заполнена, когда введены все b-битные слова. После того, как память полностью заполнена, первое прочитанное слово - это первое слово, записанное в памяти. В процессе чтения, информация продолжает сдвигаться вправо с каждым импульсом сигнала синхронизации. При чтении информация теряется!

Этот тип памяти может использоваться для управления адресами других запоминающих устройств во время сбоев в работе микропроцессорной системы.



Память LIFO

Для этой памяти требуется двунаправленный регистр SISO. В этом случае регистры имеют управляющий сигнал R/nL, который определяет направление сдвига. Слова записываются как в памяти FIFO, сдвигая данные вправо при R/nL=1, а чтение выполняется путем сдвига в противоположном направлении (влево) при R/nL=0. Таким образом, последнее записанное слово также является первым прочитанным. Выходы данных представлены выходами Q(n-1) каждого регистра.


Память LIFO используется как стековая память в микропроцессорных системах.

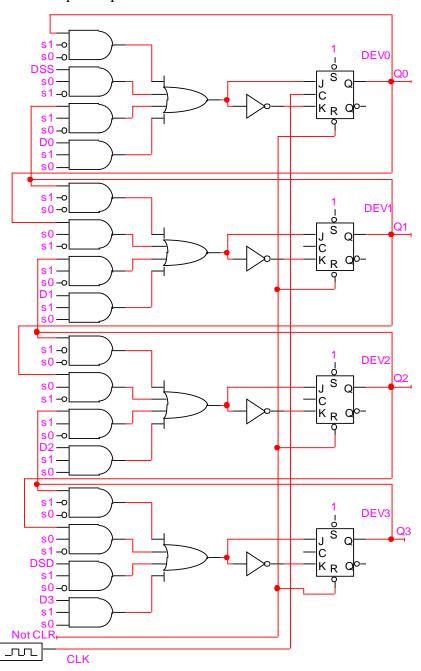
# Синтез регистров

Покажем, как можно выполнить синтез 4-разрядного регистра с параллельной загрузкой и реверсивным сдвигом. Предположим, что синтезируемый регистр должен обеспечивать и режим хранения загруженного в регистр слова. Число триггеров равно четырем. Для обеспечения режима хранения коммутатор в i-ом разряде должен иметь дополнительный вход, который следует подключить к выходу триггера i-го разряда.

Два управляющих сигнала s1 и s0 используются для выбора рабочего режима. Количество управляющих сигналов n зависит от количества рабочих режимов, и определяется согласно формуле  $n = \log 2m$  [.

# Интегральная схема универсального регистра 74-194




# Таблица переходов для универсального регистра:

| Режим работы          | Сигналы<br>управления |    | Выходы |       |       |       |     |  |
|-----------------------|-----------------------|----|--------|-------|-------|-------|-----|--|
|                       | S1                    | S0 | Q3     | Q2    | Q1    | Q0    | t   |  |
| Сохранение            | 0                     | 0  | $Q_3$  | $Q_2$ | $Q_1$ | $Q_0$ |     |  |
| Сдвиг влево           | 0                     | 1  | $Q_2$  | $Q_1$ | $Q_0$ | DSS   | t+1 |  |
| Сдвиг вправо          | 1                     | 0  | DSD    | $Q_3$ | $Q_2$ | $Q_1$ |     |  |
| Параллельная загрузка | 1                     | 1  | $D_3$  | $D_2$ | $D_1$ | $D_0$ |     |  |

Логические формулы:

$$\begin{split} &J_{3} = \overline{K}_{3} = \overline{s}_{1} \overline{s}_{0} Q_{3} \vee \overline{s}_{1} s_{0} Q_{2} \vee s_{1} \overline{s}_{0} DSD \vee s_{1} s_{0} D_{3}, \\ &J_{2} = \overline{K}_{2} = \overline{s}_{1} \overline{s}_{0} Q_{2} \vee \overline{s}_{1} s_{0} Q_{1} \vee s_{1} \overline{s}_{0} Q_{3} \vee s_{1} s_{0} D_{2}, \\ &J_{1} = \overline{K}_{1} = \overline{s}_{1} \overline{s}_{0} Q_{1} \vee \overline{s}_{1} s_{0} Q_{0} \vee s_{1} \overline{s}_{0} Q_{2} \vee s_{1} s_{0} D_{1}, \\ &J_{0} = \overline{K}_{0} = \overline{s}_{1} \overline{s}_{0} Q_{0} \vee \overline{s}_{1} s_{0} DSS \vee s_{1} \overline{s}_{0} Q_{1} \vee s_{1} s_{0} D_{0}. \end{split}$$

# Схема регистра

