
VII. СИНТЕЗ ПОСЛЕДОВАТЕЛЬНОСТНЫХ СХЕМ

Текущее состояние последовательностных логических схем (ПЛС) определяется не только поступившими входными сигналами, но и предыдущими значениями входных сигналов.

ПЛС содержит конечное число элементов памяти и управляющую комбинационную логическую схему.

Состояние ПЛС определяется общим состоянием всех триггеров. ПЛС с *п* триггерами может иметь до **2**ⁿ состояний.

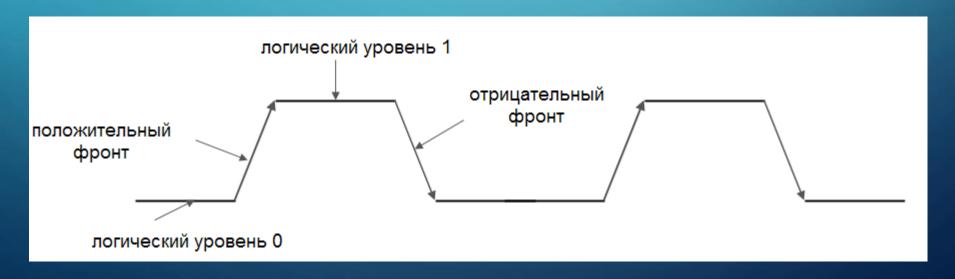
По режиму работы различают 2 основные категории ПЛС:

- 1. асинхронные ПЛС
- 2. синхронные ПЛС

Временная диаграмма тактового сигнала:

ЭТАПЫ СИНТЕЗА ПЛС

- 1. Описание функционирования
- 2. Таблица переходов между состояниями, которая включает входные переменные в момент времени t, значения выходных функций в момент времени t + 1.
- 3. Минимизация логических функций
- 4. Реализация схемы.

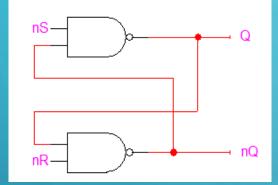

ТЕМА 7.1 ТРИГГЕРЫ

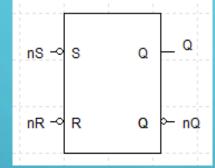
Триггеры) - это последовательностные логические схемы, которые имеют два различных стабильных состояния 0 и 1.

В зависимости от режима переключения триггеры подразделяются на:

Latch (одноуровневые триггеры, которые переключаются при *погическом уровене* 0 или логическом уровене 1 тактового сигнала).

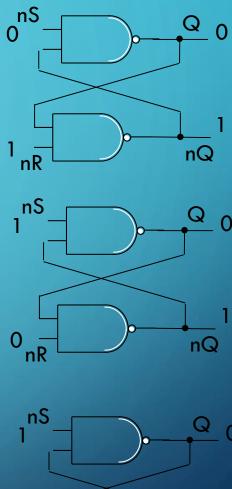
Flip-flop (двухуровневые триггеры, ведущий-ведомый (master-slave), которые переключаются при **положительном или отрицательном фронте** тактового сигнала).

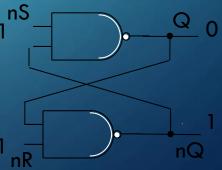


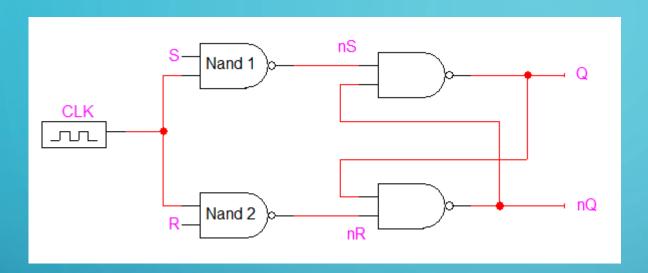

АСИНХРОННЫЙ RS ТРИГГЕР (LATCH)

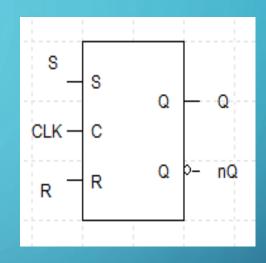
• S (Set)

• R (Reset)

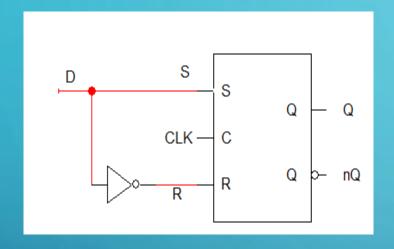

Логическая схема триггера получается путем соединения линиями обратной связи двух инвертирующих логических элементов. Сигналы R и S активны по O (обратная логика)






St	R _t	Q _{t+1}	nQ _{t+1}	Комментарии
0	0	-	-	Запрещенное состояние
0	1	1	0	Установка в 1 Set
1	0	0	1	Установка в 0 Reset
1	1	Qt	nQt	Сохранение предыдущего состояния

СИНХРОННЫЙ RS ТРИГГЕР (LATCH)



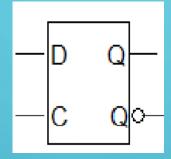
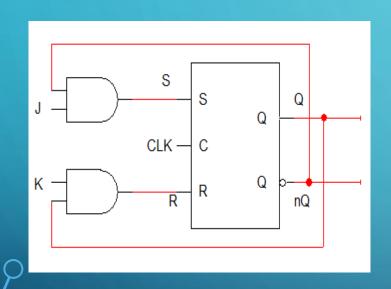
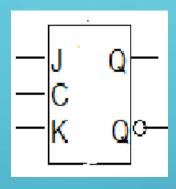


Таблица переходов синхронного RS-триг						
St	R _t	Q_{t+1}	nQ _{t+1}	Комментарии		
0	0	Qt	nQt	Сохранение предыдущего состояния		
0	1	0	1	Установка в 0 Reset		
1	0	1	0	Установка в 1 Set		
1	1	-	-	Запрещенное состояние		

СИНХРОННЫЙ D ТРИГГЕР (LATCH)

D (delay)

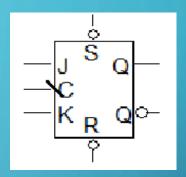

D триггер задерживает на один такт информацию, которую он получает на входе.


]				Таблица переход	ов D тригтера
D_t	Q_{t+1}	nQ _{t+1}	Комментарии		
0	0	1	Установка в 0		
1	1	0	Установка в 1		
N. E. A. William					

Основное назначение D триггера — хранение двоичных слов. Используется в регистрах и схемах RAM памяти

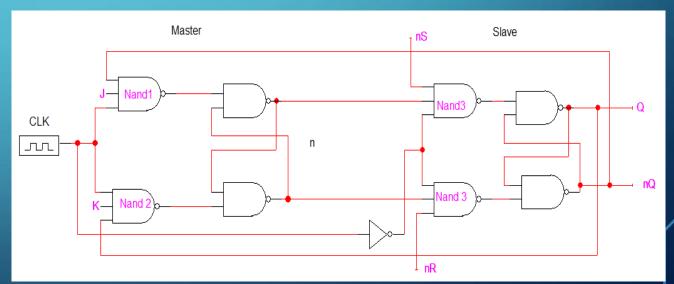
СИНХРОННЫЙ ЈК ТРИГГЕР (LATCH)

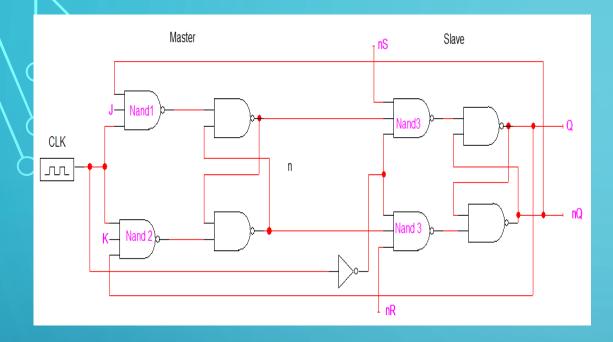
JK триггер сохраняет свою функциональность и тогда, когда RS=1. Это достигается путем дополнительных линий обратной связи.

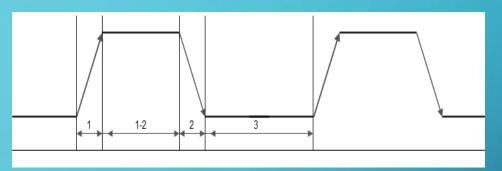

			Таблица переходов ЈК т	ригтера
K_t	Q_{t+1}	nQ _{t+1}	Комментарии	
0	Qt	nQt	Сохранение предыдущего состояния	
1	0	1	Установка в 0 Reset	
0	1	0	Установка в 1 Set	
1	nQt	Qt	Инвертирование состояния Q _t	

СИНХРОННЫЙ ЈК ТРИГГЕР (FLIP-FLOP)

Линия обратной связи приводит к тому что ЈК триггер


осциллирует когда J = K = 1

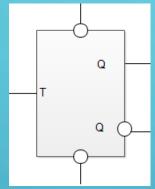

Flip-flop триггер решает эту проблему.


Структура flip-flop master-slave состоит из двух latch триггеров, одного "master" и другого "slave".

В flip-flop триггерах на положительном фронте тактового сигнала информация входит в ведущий триггер, при этом ведомый триггер практически отключен. На следующем отрицательном фронте информация передается от ведущего к ведомому триггеру, и появляется на выходах на отрицательном фронте тактового сигнала.

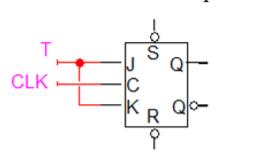
Входы nS и nR являются асинхронными входами, которые действуют на последнем уровне логических вентилей, не зависят от тактового сигнала и имеют приоритет над синхронными входами J и K (когда один из них активирован, триггер будет работать асинхронно).

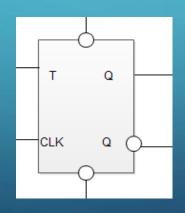
Период времени 2 - это время установки т.е. период, в течение которого данные должны быть подготовлены до подачи тактового импульса. Период времени 3 - время паузы.

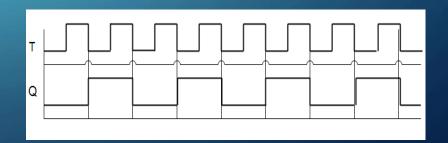

В течение периода времени 1 входные вентили еще не открыты, а вентили Nand3 и Nand4 блокируются и, таким образом, изолируют ведущий триггер от ведомого.

В зоне 1–2 элементы Nand1 и Nand2 открыты, и информация передается мастеру. Вентили Nand 3 и Nand 4 закрыты, и ведомый триггер хранит свою старую информацию.

T ТРИГГЕР (FLIP-FLOP)


T триггер (Toggle) получается из JK триггера типа flip-flop при соединении входов J и K.




T _t	Q _{t+1}	nQ _{t+1}	Комментарии
0	Qt	nQt	Сохранение предыдущего состояния
1	nQt	Qt	Инвертирование состояния Qt

Логическая схема синхронного Т триггера

Триггер Т используется в счетчиках и в схемах деления частоты на 2.

ТАБЛИЦЫ ВОЗБУЖДЕНИЯ ТРИГГЕРОВ.

St	R _t	Q _{t+1}	nQ _{t+1}
0	0	Qt	nQt
0	1	0	1
1	0	1	0
1	1	-	-

Qt	Q _{t+1}	S	R
0	0		
0	1		
1	0		
1	1		

T _t	Q_{t+1}	nQ _{t+1}
0	Qt	nQ_t
1	nQt	Qt

Qt	Q _{t+1}	T
0	0	
0	1	
1	0	
1	1	

D _t	Q_{t+1}	nQ _{t+1}
0	0	1
1	1	0

Qt	Q _{t+1}	D
0	0	
0	1	
1	0	
1	1	

J_{t}	K_t	Q_{t+1}	nQ_{t+1}
0	0	Qt	nQ_t
0	1	0	1
1	0	1	0
1	1	nQt	Qt

Qt	Q_{t+1}	J	K
0	0		
0	1		
1	0		
1	1		

