
Of course, asynchronous circuits are occasionally necessary when com-
municating between systems with different clocks or when receiving inputs
at arbitrary times, just as analog circuits are necessary when communicat-
ing with the real world of continuous voltages. Furthermore, research in
asynchronous circuits continues to generate interesting insights, some of
which can improve synchronous circuits too.

3 . 4 FINITE STATE MACHINES
Synchronous sequential circuits can be drawn in the forms shown in
Figure 3.22. These forms are called finite state machines (FSMs). They get
their name because a circuit with k registers can be in one of a finite num-
ber (2k) of unique states. An FSM has M inputs, N outputs, and k bits of
state. It also receives a clock and, optionally, a reset signal. An FSM con-
sists of two blocks of combinational logic, next state logic and output
logic, and a register that stores the state. On each clock edge, the FSM
advances to the next state, which was computed based on the current state
and inputs. There are two general classes of finite state machines, charac-
terized by their functional specifications. In Moore machines, the outputs
depend only on the current state of the machine. In Mealy machines, the
outputs depend on both the current state and the current inputs. Finite
state machines provide a systematic way to design synchronous sequential
circuits given a functional specification. This method will be explained in
the remainder of this section, starting with an example.

3 . 4 .1 FSM Design Example

To illustrate the design of FSMs, consider the problem of inventing a
controller for a traffic light at a busy intersection on campus.
Engineering students are moseying between their dorms and the labs on
Academic Ave. They are busy reading about FSMs in their favorite

3.4 Finite State Machines 117

CLK

M Nknext
state
logic

output
logic

(a)

inputs outputsstate
next
state

k

(b)

CLK

M Nknext
state
logic

output
logic

inputs outputsstate
next
state k

Figure 3.22 Finite state
machines: (a) Moore machine,
(b) Mealy machine

Moore and Mealy machines
are named after their promot-
ers, researchers who developed
automata theory, the mathe-
matical underpinnings of state
machines, at Bell Labs.

Edward F. Moore
(1925–2003), not to be
confused with Intel founder
Gordon Moore, published his
seminal article, Gedanken-
experiments on Sequential
Machines in 1956. He subse-
quently became a professor of
mathematics and computer
science at the University of
Wisconsin.

George H. Mealy published
A Method of Synthesizing
Sequential Circuits in 1955.
He subsequently wrote the
first Bell Labs operating
system for the IBM 704
computer. He later joined
Harvard University.

textbook and aren’t looking where they are going. Football players are
hustling between the athletic fields and the dining hall on Bravado
Boulevard. They are tossing the ball back and forth and aren’t looking
where they are going either. Several serious injuries have already
occurred at the intersection of these two roads, and the Dean of Students
asks Ben Bitdiddle to install a traffic light before there are fatalities.

Ben decides to solve the problem with an FSM. He installs two traffic
sensors, TA and TB, on Academic Ave. and Bravado Blvd., respectively.
Each sensor indicates TRUE if students are present and FALSE if the street
is empty. He also installs two traffic lights, LA and LB, to control traffic.
Each light receives digital inputs specifying whether it should be green,
yellow, or red. Hence, his FSM has two inputs, TA and TB, and two out-
puts, LA and LB. The intersection with lights and sensors is shown in
Figure 3.23. Ben provides a clock with a 5-second period. On each clock
tick (rising edge), the lights may change based on the traffic sensors. He
also provides a reset button so that Physical Plant technicians can put the
controller in a known initial state when they turn it on. Figure 3.24 shows
a black box view of the state machine.

Ben’s next step is to sketch the state transition diagram, shown in
Figure 3.25, to indicate all the possible states of the system and the transi-
tions between these states. When the system is reset, the lights are green
on Academic Ave. and red on Bravado Blvd. Every 5 seconds, the con-
troller examines the traffic pattern and decides what to do next. As long

118 CHAPTER THREE Sequential Logic Design

TA

TB

LA

LB

CLK

Reset

Traffic
Light

Controller

Figure 3.24 Black box view of
finite state machine

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

B
ravado

B
lvd.

Dorms

Fields
Athletic

Dining
Hall

Labs

Figure 3.23 Campus map

as traffic is present on Academic Ave., the lights do not change. When
there is no longer traffic on Academic Ave., the light on Academic Ave.
becomes yellow for 5 seconds before it turns red and Bravado Blvd.’s light
turns green. Similarly, the Bravado Blvd. light remains green as long as
traffic is present on the boulevard, then turns yellow and eventually red.

In a state transition diagram, circles represent states and arcs repre-
sent transitions between states. The transitions take place on the rising
edge of the clock; we do not bother to show the clock on the diagram,
because it is always present in a synchronous sequential circuit. Moreover,
the clock simply controls when the transitions should occur, whereas the
diagram indicates which transitions occur. The arc labeled Reset pointing
from outer space into state S0 indicates that the system should enter that
state upon reset, regardless of what previous state it was in. If a state has
multiple arcs leaving it, the arcs are labeled to show what input triggers
each transition. For example, when in state S0, the system will remain in
that state if TA is TRUE and move to S1 if TA is FALSE. If a state has a
single arc leaving it, that transition always occurs regardless of the inputs.
For example, when in state S1, the system will always move to S2. The
value that the outputs have while in a particular state are indicated in the
state. For example, while in state S2, LA is red and LB is green.

Ben rewrites the state transition diagram as a state transition table
(Table 3.1), which indicates, for each state and input, what the next
state, S�, should be. Note that the table uses don’t care symbols (X)
whenever the next state does not depend on a particular input. Also note
that Reset is omitted from the table. Instead, we use resettable flip-flops
that always go to state S0 on reset, independent of the inputs.

The state transition diagram is abstract in that it uses states labeled
{S0, S1, S2, S3} and outputs labeled {red, yellow, green}. To build a real
circuit, the states and outputs must be assigned binary encodings. Ben
chooses the simple encodings given in Tables 3.2 and 3.3. Each state and
each output is encoded with two bits: S1:0, LA1:0, and LB1:0.

3.4 Finite State Machines 119

S0
LA: green
LB: red

LA: red
LB: yellow

LA: yellow
LB: red

LA: red
LB: green

S1

S3 S2

TA

TA

TB

TB

Reset

Figure 3.25 State transition
diagram

Ben updates the state transition table to use these binary encodings, as
shown in Table 3.4. The revised state transition table is a truth table speci-
fying the next state logic. It defines next state, S�, as a function of the cur-
rent state, S, and the inputs. The revised output table is a truth table
specifying the output logic. It defines the outputs, LA and LB, as functions
of the current state, S.

From this table, it is straightforward to read off the Boolean equa-
tions for the next state in sum-of-products form.

(3.1)

The equations can be simplified using Karnaugh maps, but often
doing it by inspection is easier. For example, the TB and terms in the
S�1 equation are clearly redundant. Thus S�1 reduces to an XOR opera-
tion. Equation 3.2 gives the next state equations.

TB

 S�
0�S1S0TA� S1S0TB

 S�
1� S1S0� S1S0TB� S1S0 TB

120 CHAPTER THREE Sequential Logic Design

Table 3.3 Output encoding

Output Encoding L1:0

green 00

yellow 01

red 10

Table 3.4 State transition table with binary encodings

Current State Inputs Next State
S1 S0 TA TB S�1 S�0

0 0 0 X 0 1

0 0 1 X 0 0

0 1 X X 1 0

1 0 X 0 1 1

1 0 X 1 1 0

1 1 X X 0 0

Table 3.1 State transition table

Current Inputs Next State
State S TA TB S�

S0 0 X S1

S0 1 X S0

S1 X X S2

S2 X 0 S3

S2 X 1 S2

S3 X X S0

Table 3.2 State encoding

State Encoding S1:0

S0 00

S1 01

S2 10

S3 11

(3.2)

Similarly, Ben writes an output table (Table 3.5) indicating, for each
state, what the output should be in that state. Again, it is straightfor-
ward to read off and simplify the Boolean equations for the outputs. For
example, observe that LA1 is TRUE only on the rows where S1 is TRUE.

(3.3)

Finally, Ben sketches his Moore FSM in the form of Figure 3.22(a).
First, he draws the 2-bit state register, as shown in Figure 3.26(a). On
each clock edge, the state register copies the next state, S�1:0, to become
the state, S1:0. The state register receives a synchronous or asynchronous
reset to initialize the FSM at startup. Then, he draws the next state logic,
based on Equation 3.2, which computes the next state, based on the cur-
rent state and inputs, as shown in Figure 3.26(b). Finally, he draws the
output logic, based on Equation 3.3, which computes the outputs based
on the current state, as shown in Figure 3.26(c).

Figure 3.27 shows a timing diagram illustrating the traffic light con-
troller going through a sequence of states. The diagram shows CLK,
Reset, the inputs TA and TB, next state S�, state S, and outputs LA and LB.
Arrows indicate causality; for example, changing the state causes the out-
puts to change, and changing the inputs causes the next state to change.
Dashed lines indicate the rising edge of CLK when the state changes.

The clock has a 5-second period, so the traffic lights change at most
once every 5 seconds. When the finite state machine is first turned on, its
state is unknown, as indicated by the question marks. Therefore, the sys-
tem should be reset to put it into a known state. In this timing diagram,

 LB0� S1 S0

 LB1�S1

 LA0�S1 S0

 LA1� S1

 S�
0� S1S0TA�S1S0TB

 S�
1�S1 ⊕ S0

3.4 Finite State Machines 121

Table 3.5 Output table

Current State Outputs
S1 S0 LA1 LA0 LB1 LB0

0 0 0 0 1 0

0 1 0 1 1 0

1 0 1 0 0 0

1 1 1 0 0 1

122 CHAPTER THREE Sequential Logic Design

(a)

S1

S0

S'1

S'0

CLK

state register

Reset

r

S1

S0

S'1

S'0

CLK

next state logic state register

Reset

TA

TB

inputs
(b)

S1 S0

r

S1

S0

S'1

S'0

CLK

next state logic output
logic

state register

Reset

LA1

LB1

LB0

LA0

TA

TB

inputs outputs
(c)

S1 S0

r

Figure 3.26 State machine circuit for traffic light controller

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

Figure 3.27 Timing diagram for traffic light controller

This schematic uses some
AND gates with bubbles on
the inputs. They might be
constructed with AND gates
and input inverters, with
NOR gates and inverters for
the non-bubbled inputs, or
with some other combination
of gates. The best choice
depends on the particular
implementation technology.

S immediately resets to S0, indicating that asynchronously resettable flip-
flops are being used. In state S0, light LA is green and light LB is red.

In this example, traffic arrives immediately on Academic Ave.
Therefore, the controller remains in state S0, keeping LA green even
though traffic arrives on Bravado Blvd. and starts waiting. After 15 sec-
onds, the traffic on Academic Ave. has all passed through and TA falls.
At the following clock edge, the controller moves to state S1, turning LA
yellow. In another 5 seconds, the controller proceeds to state S2 in which
LA turns red and LB turns green. The controller waits in state S2 until all
the traffic on Bravado Blvd. has passed through. It then proceeds to state
S3, turning LB yellow. 5 seconds later, the controller enters state S0,
turning LB red and LA green. The process repeats.

3 . 4 . 2 State Encodings

In the previous example, the state and output encodings were selected arbi-
trarily. A different choice would have resulted in a different circuit. A natu-
ral question is how to determine the encoding that produces the circuit with
the fewest logic gates or the shortest propagation delay. Unfortunately, there
is no simple way to find the best encoding except to try all possibilities,
which is infeasible when the number of states is large. However, it is often
possible to choose a good encoding by inspection, so that related states or
outputs share bits. Computer-aided design (CAD) tools are also good at
searching the set of possible encodings and selecting a reasonable one.

One important decision in state encoding is the choice between
binary encoding and one-hot encoding. With binary encoding, as was
used in the traffic light controller example, each state is represented as a
binary number. Because K binary numbers can be represented by log2K
bits, a system with K states only needs log2K bits of state.

In one-hot encoding, a separate bit of state is used for each state. It is
called one-hot because only one bit is “hot” or TRUE at any time. For
example, a one-hot encoded FSM with three states would have state encod-
ings of 001, 010, and 100. Each bit of state is stored in a flip-flop, so one-
hot encoding requires more flip-flops than binary encoding. However, with
one-hot encoding, the next-state and output logic is often simpler, so fewer
gates are required. The best encoding choice depends on the specific FSM.

Example 3.6 FSM STATE ENCODING

A divide-by-N counter has one output and no inputs. The output Y is HIGH for
one clock cycle out of every N. In other words, the output divides the frequency
of the clock by N. The waveform and state transition diagram for a divide-by-3
counter is shown in Figure 3.28. Sketch circuit designs for such a counter using
binary and one-hot state encodings.

3.4 Finite State Machines 123

Despite Ben’s best efforts, stu-
dents don’t pay attention to
traffic lights and collisions
continue to occur. The Dean
of Students next asks him to
design a catapult to throw
engineering students directly
from their dorm roofs
through the open windows
of the lab, bypassing the
troublesome intersection all
together. But that is the sub-
ject of another textbook.

Solution: Tables 3.6 and 3.7 show the abstract state transition and output tables
before encoding.

Table 3.8 compares binary and one-hot encodings for the three states.

The binary encoding uses two bits of state. Using this encoding, the state transi-
tion table is shown in Table 3.9. Note that there are no inputs; the next state
depends only on the current state. The output table is left as an exercise to the
reader. The next-state and output equations are:

(3.4)

(3.5)

The one-hot encoding uses three bits of state. The state transition table for this
encoding is shown in Table 3.10 and the output table is again left as an exercise
to the reader. The next-state and output equations are as follows:

(3.6)

(3.7)

Figure 3.29 shows schematics for each of these designs. Note that the hardware
for the binary encoded design could be optimized to share the same gate for
Y and S�0. Also observe that the one-hot encoding requires both settable (s) and
resettable (r) flip-flops to initialize the machine to S0 on reset. The best imple-
mentation choice depends on the relative cost of gates and flip-flops, but the
one-hot design is usually preferable for this specific example.

A related encoding is the one-cold encoding, in which K states are
represented with K bits, exactly one of which is FALSE.

Y� S0

 S�
0� S2

 S�
1� S0

 S�
2� S1

Y �S1S0

 S�
0�S1S0

 S�
1�S1 S0

124 CHAPTER THREE Sequential Logic Design

CLK

Y

(a)

S0
Y: 1

S1
Y: 0

S2
Y: 0

Reset

(b)

Figure 3.28 Divide-by-3 counter
(a) waveform and (b) state
transition diagram

Table 3.6 Divide-by-3 counter
state transition table

Current Next
State State

S0 S1

S1 S2

S2 S0

Table 3.7 Divide-by-3 counter
output table

Current
State Output

S0 1

S1 0

S2 0

3.4 Finite State Machines 125

Table 3.8 Binary and one-hot encodings for divide-by-3 counter

State Binary Encoding One-Hot Encoding
S2 S1 S0 S1 S0

S0 0 0 1 0 1

S1 0 1 0 1 0

S2 1 0 0 0 0

Table 3.9 State transition table with binary
encoding

Current State Next State
S1 S0 S�1 S�0

0 0 0 1

0 1 1 0

1 0 0 0

Table 3.10 State transition table with one-hot encoding

Current State Next State
S2 S1 S0 S�2 S�1 S�0

0 0 1 0 1 0

0 1 0 1 0 0

1 0 0 0 0 1

S1

S0

S'1

S'0

CLK

Reset

Y

output logic outputstate registernext state logic
(a)

Reset

CLK

r r s

S0S2S1
Y

(b)

S0S1

r

Figure 3.29 Divide-by-3 circuits
for (a) binary and (b) one-hot
encodings

3 . 4 . 3 Moore and Mealy Machines

So far, we have shown examples of Moore machines, in which the output
depends only on the state of the system. Hence, in state transition dia-
grams for Moore machines, the outputs are labeled in the circles. Recall
that Mealy machines are much like Moore machines, but the outputs can
depend on inputs as well as the current state. Hence, in state transition
diagrams for Mealy machines, the outputs are labeled on the arcs instead
of in the circles. The block of combinational logic that computes the out-
puts uses the current state and inputs, as was shown in Figure 3.22(b).

Example 3.7 MOORE VERSUS MEALY MACHINES

Alyssa P. Hacker owns a pet robotic snail with an FSM brain. The snail crawls
from left to right along a paper tape containing a sequence of 1’s and 0’s. On each
clock cycle, the snail crawls to the next bit. The snail smiles when the last four
bits that it has crawled over are, from left to right, 1101. Design the FSM to com-
pute when the snail should smile. The input A is the bit underneath the snail’s
antennae. The output Y is TRUE when the snail smiles. Compare Moore and
Mealy state machine designs. Sketch a timing diagram for each machine showing
the input, states, and output as your snail crawls along the sequence 111011010.

Solution: The Moore machine requires five states, as shown in Figure 3.30(a).
Convince yourself that the state transition diagram is correct. In particular, why
is there an arc from S4 to S2 when the input is 1?

In comparison, the Mealy machine requires only four states, as shown in Figure
3.30(b). Each arc is labeled as A/Y. A is the value of the input that causes that
transition, and Y is the corresponding output.

Tables 3.11 and 3.12 show the state transition and output tables for the Moore
machine. The Moore machine requires at least three bits of state. Consider using a
binary state encoding: S0 � 000, S1 � 001, S2 � 010, S3 � 011, and S4 � 100.
Tables 3.13 and 3.14 rewrite the state transition and output tables with these
encodings (These four tables follow on page 128).

From these tables, we find the next state and output equations by inspection.
Note that these equations are simplified using the fact that states 101, 110, and
111 do not exist. Thus, the corresponding next state and output for the non-
existent states are don’t cares (not shown in the tables). We use the don’t cares
to minimize our equations.

(3.8)

S�
0�S2S1S0 A� S1S0A

S�
1�S1 S0A� S1S0�S2A

S�
2�S1 S0A

126 CHAPTER THREE Sequential Logic Design

An easy way to remember the
difference between the two
types of finite state machines
is that a Moore machine typi-
cally has more states than a
Mealy machine for a given
problem.

(3.9)

Table 3.15 shows the combined state transition and output table for the Mealy
machine. The Mealy machine requires at least two bits of state. Consider using a
binary state encoding: S0 � 00, S1 � 01, S2 � 10, and S3 � 11. Table 3.16
rewrites the state transition and output table with these encodings.

From these tables, we find the next state and output equations by inspection.

(3.10)

(3.11)

The Moore and Mealy machine schematics are shown in Figure 3.31(a) and
3.31(b), respectively.

The timing diagrams for the Moore and Mealy machines are shown in Figure
3.32 (see page 131). The two machines follow a different sequence of states.
Moreover, the Mealy machine’s output rises a cycle sooner because it responds to
the input rather than waiting for the state change. If the Mealy output were
delayed through a flip-flop, it would match the Moore output. When choosing
your FSM design style, consider when you want your outputs to respond.

Y� S1 S0 A

 S0
� � S 1S0A� S1 S0 A�S1S0A

S�
1� S1S0 � S1S0A

Y � S2

3.4 Finite State Machines 127

Reset

(a)

S0
0

S1
0

S2
0

S3
0

S4
1

0

1 1 0 1

1

01 0
0

Reset

(b)

S0 S1 S2 S3

0/0

1/0 1/0 0/0
1/1

0/01/0

0/0

Figure 3.30 FSM state
transition diagrams: (a) Moore
machine, (b) Mealy machine

128 CHAPTER THREE Sequential Logic Design

Table 3.14 Moore output table
with state encodings

Current State Output
S2 S1 S0 Y

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1

Table 3.13 Moore state transition table with state encodings

Current State Input Next State
S2 S1 S0 A S�2 S�1 S�0

0 0 0 0 0 0 0

0 0 0 1 0 0 1

0 0 1 0 0 0 0

0 0 1 1 0 1 0

0 1 0 0 0 1 1

0 1 0 1 0 1 0

0 1 1 0 0 0 0

0 1 1 1 1 0 0

1 0 0 0 0 0 0

1 0 0 1 0 1 0

Table 3.11 Moore state transition table

Current State Input Next State
S A S�

S0 0 S0

S0 1 S1

S1 0 S0

S1 1 S2

S2 0 S3

S2 1 S2

S3 0 S0

S3 1 S4

S4 0 S0

S4 1 S2

Table 3.12 Moore output table

Current Output
State

S Y

S0 0

S1 0

S2 0

S3 0

S4 1

3 . 4 . 4 Factoring State Machines

Designing complex FSMs is often easier if they can be broken down into
multiple interacting simpler state machines such that the output of some
machines is the input of others. This application of hierarchy and modu-
larity is called factoring of state machines.

3.4 Finite State Machines 129

Table 3.15 Mealy state transition and output table

Current State Input Next State Output
S A S� Y

S0 0 S0 0

S0 1 S1 0

S1 0 S0 0

S1 1 S2 0

S2 0 S3 0

S2 1 S2 0

S3 0 S0 0

S3 1 S1 1

Table 3.16 Mealy state transition and output table with
state encodings

Current State Input Next State Output
S1 S0 A S�1 S�0 Y

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 0

0 1 1 1 0 0

1 0 0 1 1 0

1 0 1 1 0 0

1 1 0 0 0 0

1 1 1 0 1 1

130 CHAPTER THREE Sequential Logic Design

Example 3.8 UNFACTORED AND FACTORED STATE MACHINES

Modify the traffic light controller from Section 3.4.1 to have a parade mode,
which keeps the Bravado Boulevard light green while spectators and the band
march to football games in scattered groups. The controller receives two more
inputs: P and R. Asserting P for at least one cycle enters parade mode. Asserting
R for at least one cycle leaves parade mode. When in parade mode, the con-
troller proceeds through its usual sequence until LB turns green, then remains in
that state with LB green until parade mode ends.

First, sketch a state transition diagram for a single FSM, as shown in Figure
3.33(a). Then, sketch the state transition diagrams for two interacting FSMs, as

S2

S1

S0

S'2

S'1

S'0

Y

CLK

Reset

A

(a)

S2

S1

S0

(b)

S'1

S'0

CLK

Reset

S1

S0

A

Y

S0

S1

Figure 3.31 FSM schematics for
(a) Moore and (b) Mealy
machines

3.4 Finite State Machines 131

Mealy Machine

Moore Machine

CLK

Reset

A

S

Y

S

Y

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S0

S0

S1

S1

??

??

S2

S2

S3

S3

S4

S1

S0

S0

1 1 1 1 10 0 01

S2 S3

S3

S4

S1

S2

S2 S2

Figure 3.32 Timing diagrams for Moore and Mealy machines

Controller
FSMTA

(a)

TB

LA

LB

(b)

Mode
FSM

Lights
FSM

P

M

Controller
FSM

LA

LB

TA

TB

R

P
R

Figure 3.33 (a) single and
(b) factored designs for
modified traffic light
controller FSM

shown in Figure 3.33(b). The Mode FSM asserts the output M when it is in
parade mode. The Lights FSM controls the lights based on M and the traffic
sensors, TA and TB.

Solution: Figure 3.34(a) shows the single FSM design. States S0 to S3 handle
normal mode. States S4 to S7 handle parade mode. The two halves of the dia-
gram are almost identical, but in parade mode, the FSM remains in S6 with a
green light on Bravado Blvd. The P and R inputs control movement between
these two halves. The FSM is messy and tedious to design. Figure 3.34(b) shows
the factored FSM design. The mode FSM has two states to track whether the
lights are in normal or parade mode. The Lights FSM is modified to remain in
S2 while M is TRUE.

3 . 4 . 5 FSM Review

Finite state machines are a powerful way to systematically design
sequential circuits from a written specification. Use the following proce-
dure to design an FSM:

� Identify the inputs and outputs.

� Sketch a state transition diagram.

132 CHAPTER THREE Sequential Logic Design

S0
LA: green
LB: red LA: green

LB: red

LA: yellow
LB: red LA: yellow

LB: red

LA: red
LB: green LA: red

LB: green

LA: red
LB: yellow LA: red

LB: yellow

S1

S3 S2

TA

TA

TB

TB

Reset

S4 S5

S7 S6

TA

TA

P

P P

P

P

P

R

R

R

R

R

P

R
P

TAP

TAP

P

TAR

TAR

R

TBRTBR

(a)

LA: green
LB: red

LA: yellow
LB: red

LA: red
LB: green

LA: red
LB: yellow

S0 S1

S3 S2

TA

TA

M + TB

MTB

Reset

Lights FSM

(b)

S0
M: 0

S1
M: 1

P
Reset P

Mode FSM

R

R

Figure 3.34 State transition
diagrams: (a) unfactored,
(b) factored

� For a Moore machine:
– Write a state transition table.
– Write an output table.

� For a Mealy machine:
– Write a combined state transition and output table.

� Select state encodings—your selection affects the hardware design.

� Write Boolean equations for the next state and output logic.

� Sketch the circuit schematic.

We will repeatedly use FSMs to design complex digital systems through-
out this book.

3 . 5 TIMING OF SEQUENTIAL LOGIC
Recall that a flip-flop copies the input D to the output Q on the rising edge
of the clock. This process is called sampling D on the clock edge. If D is
stable at either 0 or 1 when the clock rises, this behavior is clearly defined.
But what happens if D is changing at the same time the clock rises?

This problem is similar to that faced by a camera when snapping a
picture. Imagine photographing a frog jumping from a lily pad into the
lake. If you take the picture before the jump, you will see a frog on a lily
pad. If you take the picture after the jump, you will see ripples in the
water. But if you take it just as the frog jumps, you may see a blurred
image of the frog stretching from the lily pad into the water. A camera is
characterized by its aperture time, during which the object must remain
still for a sharp image to be captured. Similarly, a sequential element has
an aperture time around the clock edge, during which the input must be
stable for the flip-flop to produce a well-defined output.

The aperture of a sequential element is defined by a setup time and
a hold time, before and after the clock edge, respectively. Just as the
static discipline limited us to using logic levels outside the forbidden
zone, the dynamic discipline limits us to using signals that change out-
side the aperture time. By taking advantage of the dynamic discipline,
we can think of time in discrete units called clock cycles, just as we
think of signal levels as discrete 1’s and 0’s. A signal may glitch and
oscillate wildly for some bounded amount of time. Under the dynamic
discipline, we are concerned only about its final value at the end of the
clock cycle, after it has settled to a stable value. Hence, we can simply
write A[n], the value of signal A at the end of the nth clock cycle,
where n is an integer, rather than A(t), the value of A at some instant t,
where t is any real number.

The clock period has to be long enough for all signals to settle. This
sets a limit on the speed of the system. In real systems, the clock does not

3.5 Timing of Sequential Logic 133

