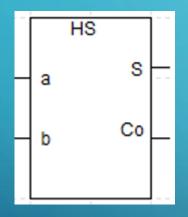
VI. ПРОЕКТИРОВАНИЕ КОМБИНАЦИОННЫХ ЛОГИЧЕСКИХ СХЕМ

ТЕМА 6.4. СУММАТОРЫ

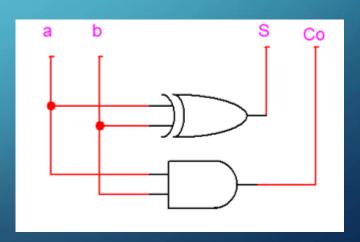
СУММАТОРЫ

Сумматоры выполняют операцию сложения двух чисел и операцию вычитания, которая заключается в суммировании вычитаемого с дополнительным кодом вычитателя.


Структура всех сумматоров основывается на двух логических схем суммирования, известных как:

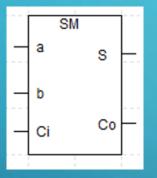
полусумматор (Half sum, обозначенная HS) и

полный сумматор (Full sum, обозначенная SM)


ПОЛУСУММАТОР

Полусумматор - это КЛС, который складывает 2 бита без учета переноса из предыдущего разряда. На выходе формируется Сумма (S) и Перенос в следующий разряд (Co).

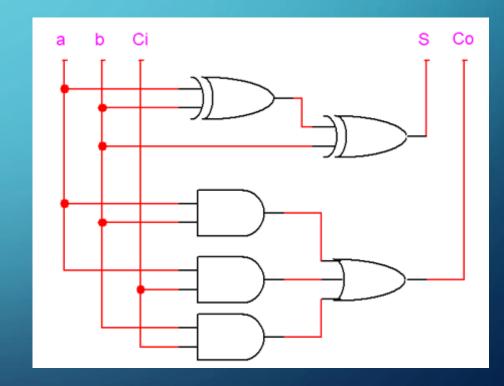
a	b	S	C ₀
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1


$$S = a \oplus b$$
$$C_0 = ab$$

ПОЛНЫЙ СУММАТОР

Полный сумматор - это КЛС, который складывает 2 бита и перенос Сі из предыдущего разряда. На выходе полный сумматор формирует Сумму

(S) и Перенос в следующий разряд (Co).

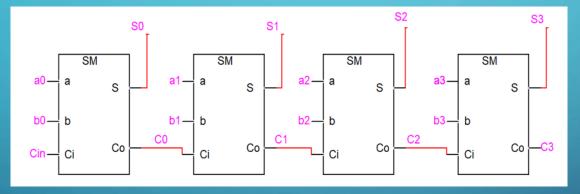

a	b	Ci	S	C_0
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

x3 00 01 11 10 0 1 1	x1x2				
0 1 1	x3	00	01	11	10
	0		1		1
1 1 1	1	1		1	

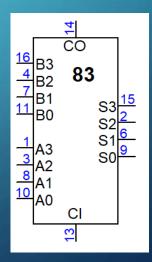
	x1x2				
	х3	00	01	11	10
	0			1	
1	1		1		1

$$S = a \oplus b \oplus C_{i}$$

$$C_{0} = ab + aC_{i} + bC_{i}$$



ПОСЛЕДОВАТЕЛЬНЫЙ СУММАТОР


Сумматоры для сложения n-разрядных двоичных слов реализуются путем соединения 1-разрядных сумматоров.

В этой схеме сложение выполняется параллельно, и распространение переноса происходит последовательно, что приводит к суммированию времени задержки, так что конечный результат обеспечивается с довольно большой задержкой по сравнению с входным сигналом.

 $A=a_3a_2a_1a_0$ $B=b_3b_2b_1b_0$

Преимущество последовательного сумматора - невысокая стоимость. **Недостатком** является то, что время задержки увеличивается пропорционально количеству разрядов.

СУММАТОР С УСКОРЕННЫМ ПЕРЕНОСОМ

Решение в этом случае является архитектурным и предполагает отказ от последовательного переноса в пользу параллельного (ускоренного). Фактически это означает переопределение логической функции, которая формирует сигнал переноса.

$$c_{i+1} = a_i b_i \vee a_i c_i \vee b_i c_i = a_i b_i \vee (a_i \vee b_i) c_i.$$

Определим 2 функции: G – Функция генерации переноса $G_i = a_i b_i$

P – функция передачи переноса $P_i = a_i \lor b_i$

$$P_i = a_i \vee b_i$$

В этом случае, формулу для переноса можно записать следующим образом:

$$c_{i+1} = G_i \vee P_i c_i$$

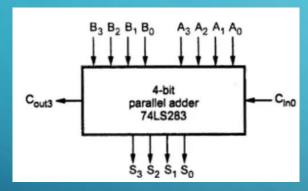
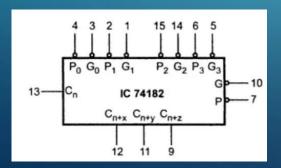
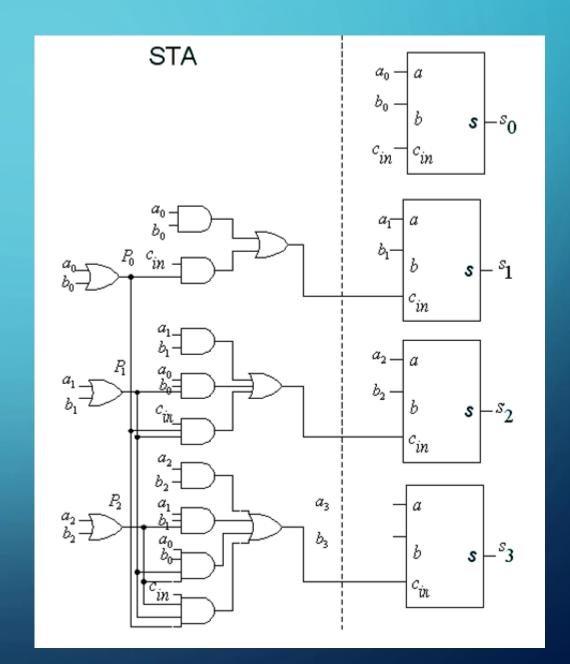

$$\begin{split} c_1 &= G_0 \vee P_0 c_{IN} \,; \\ c_2 &= G_1 \vee P_1 c_1 = G_1 \vee P_1 (G_0 \vee P_0 c_{IN}) = G_1 \vee P_1 G_0 \vee P_1 P_0 c_{IN} \,; \\ c_3 &= G_2 \vee P_2 c_2 = G_2 \vee P_2 (G_1 \vee P_1 G_0 \vee P_1 P_0 c_{IN}) = G_2 \vee P_2 G_1 \vee P_2 P_1 G_0 \vee P_2 P_1 P_0 c_{IN} \end{split}$$

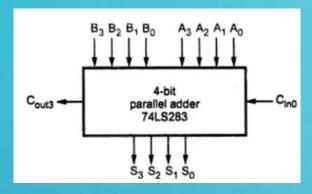
Схема 4х разрядного сумматора с ускоренным переносом:


В состав сумматора с ускоренным переносом входят два модуля:

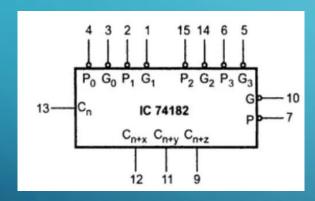

- модуль суммирования, состоящий из нескольких одноразрядных сумматоров
- модуль для формирования ускоренного переноса.

Интегральная схема 4-битного сумматора с ускоренным переносом 74_283:

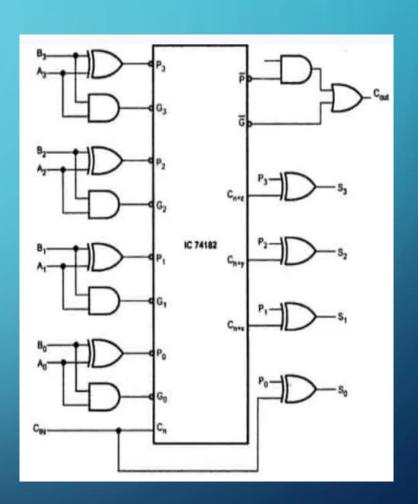
Микросхема генерации переноса 74_182:


Преимущества сумматора с ускоренным переносом

- 1. Перенос генерируется для каждого сумматора одновременно с использованием упрощенных уравнений, включающих Рі, Gi и Cin.
- 2. Эта схема уменьшает задержку распространения. Это связано с тем, что выходной перенос зависит только от первого сигнала переноса, подаваемого на вход.
- 3. Это самый быстрый сумматор по сравнению с другими типами сумматоров.


Недостатки

- 1. Схема сумматора с ускоренным переносом усложняется с увеличением числа разрядов.
- 2. Схема сумматора с ускоренным переносом стоит дорого, поскольку требует большего количества оборудования.
- 3. По мере увеличения числа переменных интегральная схема содержит больше логических вентилей, поэтому площадь этой схемы увеличивается.


Интегральная схема 4-битного сумматора с ускоренным переносом 74_283:

Микросхема генерации переноса 74_182:

$$C_{n+x} = G0 + P0$$
. Cn
 $C_{n+y} = G1 + P1$. $G0 + P1$. $P0$. Cn
 $C_{n+z} = G2 + P2$. $G1 + P2$. $P1$. $G0$
 $G' = (G3 + P3$. $G2 + P3$. $P2$. $G1 + P3$. $P2$. $P1$. $G0$.)'
 $P' = (P3$. $P2$. $P1$. $P0$.)'

