VI. ПРОЕКТИРОВАНИЕ КОМБИНАЦИОННЫХ ЛОГИЧЕСКИХ СХЕМ

ТЕМА 6.3. ПРЕОБРАЗОВАТЕЛИ КОДОВ

ПРЕОБРАЗОВАТЕЛИ КОДОВ

Преобразователи кодов это КЛС, которые изменяют вид кодирования данных.

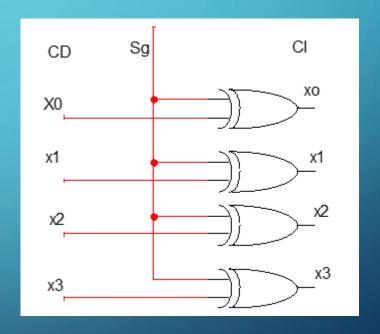
В принципе любое цифровое устройство преобразует некоторый входной код в некоторый выходной, т. е. является кодовым преобразователем.

Преобразователь кодов:
преобразователь прямого кода в обратный преобразователь прямого кода в дополнительный Двоично-десятичный преобразователь кода.

ПРЕОБРАЗОВАТЕЛЬ ПРЯМОГО КОДА В ОБРАТНЫЙ

Выполнить преобразование положительного числа X из ПК в ОК

$$X_{nk} = 01010$$


$$X_{ok} = 01010$$

Выполнить преобразование отрицательного числа Y из ПК в ОК

$$Y_{nk} = 11010$$

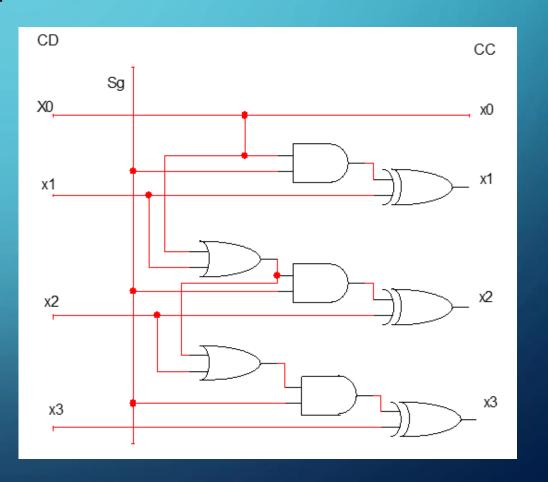
$$Y_{ok} = 10101$$

$$[x_i]_{ci} = [x_i]_{cd} \oplus Sg$$

ПРЕОБРАЗОВАТЕЛЬ ПРЯМОГО КОДА В ДОПОЛНИТЕЛЬНЫЙ

Выполнить преобразование положительного числа X из ПК в ДК

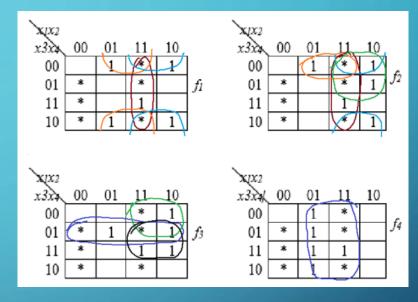
$$X_{nk} = 01010$$


$$X_{AK} = 01010$$

Выполнить преобразование отрицательного числа Y из ПК в ДК

$$Y_{nK} = 11010$$

$$Y_{AK} = 10110$$


$$[x_i]_{cc} = [x_i]_{cd} \oplus \{(x_{i-1} + x_{i-2} + ... + x_0) \cdot Sg\}$$

ДВОИЧНО-ДЕСЯТИЧНЫЙ ПРЕОБРАЗОВАТЕЛЬ КОДА

• Преобразователь кода 8 7 (-2) (-7) ightarrow 4 2 2 1

Nr.	87(-2)(-4)				4221			
	x_I	x_2	<i>X</i> ₃	X4	f_{I}	f_2	f_3	f_4
0	0	0	0	0	0	0	0	0
1	0	1	1	1	0	0	0	1
2	1	0	1	1	0	0	1	0
3	0	1	0	1	0	0	1	1
4	1	0	0	1	0	1	1	0
5	0	1	1	0	1	0	0	1
6	1	0	1	0	1	1	0	0
7	0	1	0	0	1	1	0	1
8	1	0	0	0	1	1	1	0
9	1	1	1	1	1	1	1	1
10	0	0	0	1	*	*	*	*
11	0	0	1	0	*	*	*	*
12	0	0	1	1	*	*	*	*
13	1	1	0	0	*	*	*	*
14	1	1	0	1	*	*	*	*
15	1	1	1	0	*	*	*	*

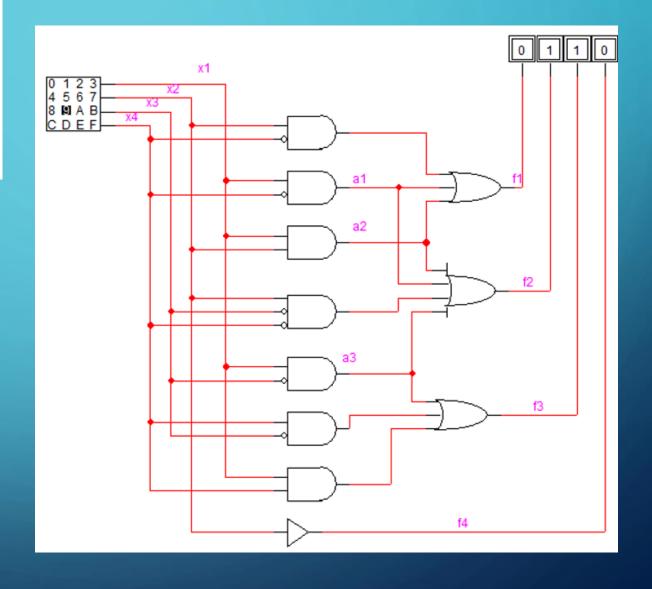
$$\begin{split} f_1 &= x_1 \overline{x}_4 \vee x_2 \overline{x}_4 \vee x_1 x_2; \\ f_2 &= x_2 \overline{x}_3 \overline{x}_4 \vee x_1 \overline{x}_4 \vee x_1 x_2 + x_1 \overline{x}_3; \\ f_3 &= x_1 \overline{x}_3 \vee \overline{x}_3 x_4 \vee x_1 x_4; \\ f_4 &= x_2. \end{split}$$

$$f_{1} = x_{1}\overline{x}_{4} \lor x_{2}\overline{x}_{4} \lor x_{1}x_{2};$$

$$f_{2} = x_{2}\overline{x}_{3}\overline{x}_{4} \lor x_{1}\overline{x}_{4} \lor x_{1}x_{2} + x_{1}\overline{x}_{3};$$

$$f_{3} = x_{1}\overline{x}_{3} \lor \overline{x}_{3}x_{4} \lor x_{1}x_{4};$$

$$f_{4} = x_{2}.$$


$$a_1 = x_1 \overline{x}_4;$$

 $a_2 = x_1 x_2$
 $a_3 = x_1 \overline{x}_3$

$$f_{1} = a_{1} \vee a_{2} \vee x_{2} \overline{x}_{4};$$

$$f_{2} = a_{1} \vee a_{2} \vee a_{3} \vee x_{2} \overline{x}_{3} \overline{x}_{4};$$

$$f_{3} = a_{3} \vee \overline{x}_{3} x_{4} \vee x_{1} x_{4};$$

$$f_{4} = x_{2}.$$

