
VI. ПРОЕКТИРОВАНИЕ КОМБИНАЦИОННЫХ ЛОГИЧЕСКИХ СХЕМ

КОМБИНАЦИОННЫЕ ЛОГИЧЕСКИЕ ТЕМЫ (КЛС)

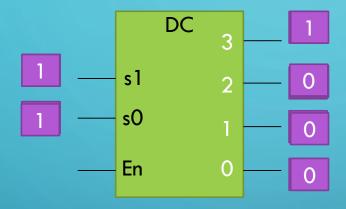
Комбинационными логическими схемами (КЛС) называются схемы, состоящие из логических элементов того или иного функционально полного базиса, неспособные к запоминанию информации.

$$y_{1} = f_{1}(x_{1}, x_{2},..., x_{n})$$

$$y_{2} = f_{2}(x_{1}, x_{2},..., x_{n})$$

$$y_{m} = f_{m}(x_{1}, x_{2},..., x_{n})$$

ЭТАПЫ СИНТЕЗА КЛС


Проектирования КЛС включает несколько последовательно выполняемых этапов:

- 1. Табличное или аналитическое описание функционирования КЛС;
- 2. Получение минимальной ДНФ (минимизация);
- 3. Преобразование полученной МДНФ посредством формул де Моргана с целью перехода к выбранному или заданному логическому базису (И-НЕ, ИЛИ-НЕ);
- 4. Синтез КЛС в соответствующем базисе логических элементов.

К КЛС относятся преобразователи кодов, декодеры и кодеры, мультиплексоры и демультиплексоры, компараторы, а также сумматоры.

ДЕКОДЕРЫ

Дешифратором или декодером (decoder) чаще всего называют кодирующее устройство, преобразующее двоичный код в унарный. Из всех *m* выходов декодера активный уровень имеется только на одном, а именно на том, номер которого равен поданному на вход двоичному числу. На всех остальных выходах декодера уровни напряжения неактивные.

Полные декодеры

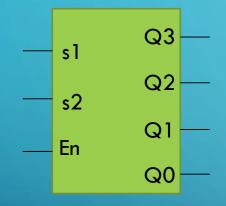
Неполные декодеры

 $m=2^n$

 $m < 2^n$

где n кол-во входов и m кол-во выходов

Двоичные декодеры

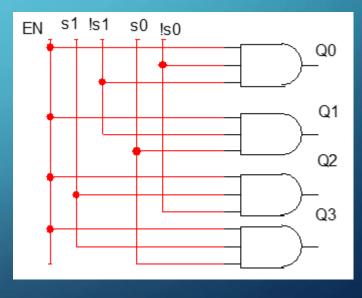

Двоично-десятичные декодеры

 $2\rightarrow 4$

4→10

3→8

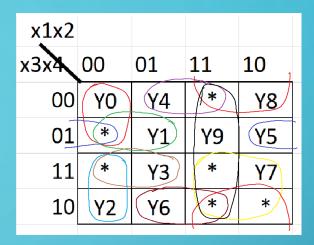
4→16

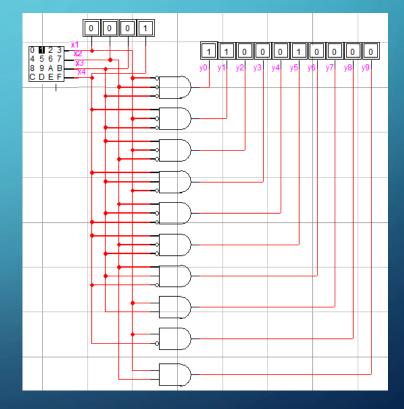

EN — вход разрешения (астивный по 1) s1, s0 — адресные входы Q3-Q0 — выходы (астивные по 1)

	⊸EN	Q3 ⁰⁻ Q2 ⁰⁻
٦.	//	Q2 0-
1)	─ S1	Q10-
	⊢so	Qdo-

En –астивный по 0 Q3-Q0 – выходы астивные по 0 Логические элементы NAND

EN	S1	S0	Q0	Q1	Q2	Q3
0	*	*	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

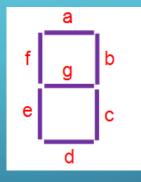

$$\begin{aligned} Q_0 &= \overline{s}_1 \overline{s}_0 E n; \\ Q_1 &= \overline{s}_1 s_0 E n; \\ Q_2 &= s_1 \overline{s}_0 E n; \\ Q_3 &= s_1 s_0 E n; \end{aligned}$$



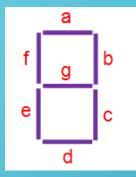
двоично-десятичные декодеры

Синтез двоично-десятичного декодера кода 842 (-3).

Десяти		ŀ	Сод		Выходы									
чная	8	4	2	-3										
цифра	х	x_2	X3	X4	yo	y_I	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	y 5	<i>y</i> ₆	y 7	<i>y</i> ₈	<i>y</i> ₉
	1													
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
1	0	1	0	1	0	1	0	0	0	0	0	0	0	0
2	0	0	1	0	0	0	1	0	0	0	0	0	0	0
3	0	1	1	1	0	0	0	1	0	0	0	0	0	0
4	0	1	0	0	0	0	0	0	1	0	0	0	0	0
5	1	0	0	1	0	0	0	0	0	1	0	0	0	0
6	0	1	1	0	0	0	0	0	0	0	1	0	0	0
7	1	0	1	1	0	0	0	0	0	0	0	1	0	0
8	1	0	0	0	0	0	0	0	0	0	0	0	1	0
9	1	1	0	1	0	0	0	0	0	0	0	0	0	1
10	0	0	0	1	*	*	*	*	*	*	*	*	*	*
11	0	0	1	1	*	*	*	*	*	*	*	*	*	*
12	1	0	1	0	*	*	*	*	*	*	*	*	*	*
13	1	1	0	0	*	*	*	*	*	*	*	*	*	*
14	1	1	1	0	*	*	*	*	*	*	*	*	*	*
15	1	1	1	1	*	*	*	*	*	*	*	*	*	*



$y_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$
$y_1 = \overline{x}_1 \overline{x}_3 x_4$
$y_2 = \overline{x}_1 \overline{x}_2 x_3$
$y_3 = \overline{x}_1 x_3 x_4$
$y_4 = x_2 \overline{x}_3 \overline{x}_4$
$y_5 = \overline{x}_2 \overline{x}_3 x_4$
$y_6 = x_2 x_3 \overline{x}_4$
$y_7 = x_1 x_3$
$y_8 = x_1 \overline{x}_4$
$v_0 = x_1 x_2$


ДЕКОДЕР BCD - 7 СЕГМЕНТОВ

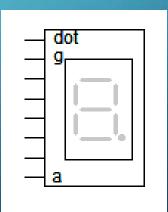
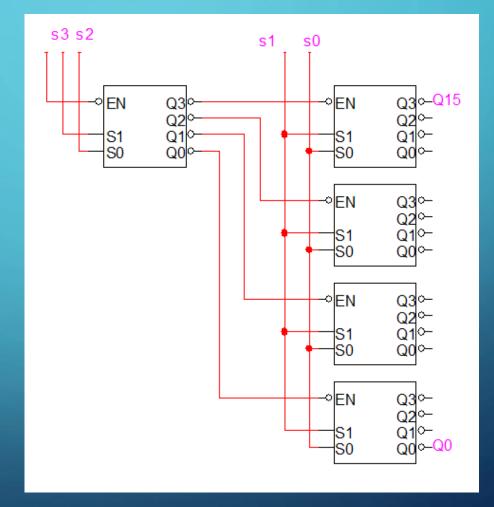

7-сегментные декодеры - это комбинаторные логические схемы, предназначенные для управления 7-сегментными цифровыми схемами отображения (светодиоды, лампочки, жидкие кристаллы или газоразрядные трубки).

Схема имеет 4 входа и 7 выходов, обозначенных a, b, c, d, e, f, g. Входы кодируют двоичное число из 4 бит.

	EN	x1	x2	х3	x4	a	b	С	d	e	f	g
	0	*	*	*	*	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1	1	1	0
1	1	0	0	0	1	0	1	1	0	0	0	0
2	1	0	0	1	0	1	1	0	1	1	0	1
3	1	0	0	1	1	1	1	1	1	0	0	1
4	1	0	1	0	0	0	1	1	0	0	1	1
5	1	0	1	0	1	1	0	1	1	0	1	1
6	1	0	1	1	0	1	0	1	1	1	1	1
7	1	0	1	1	1	1	1	1	0	0	0	0
8	1	1	0	0	0	1	1	1	1	1	1	1
9	1	1	0	0	1	1	1	1	1	0	1	1
		1	0	1	0	*	*	*	*	*	*	*
		1	0	1	1	*	*	*	*	*	*	*
		1	1	0	0	*	*	*	*	*	*	*
		1	1	0	1	*	*	*	*	*	*	*
		1	1	1	0	*	*	*	*	*	*	*
		1	1	1	1	*	*	*	*	*	*	*



РАСШИРЕНИЕ ДЕКОДИРУЮЩЕЙ СПОСОБНОСТИ ДЕКОДЕРОВ

Реализуйте декодер $4 \rightarrow 16$, используя декодеры $2 \rightarrow 4$

	EN	s3	s2	s 1	s0	Qi
	0	*	*	*	*	0
0	1	0	0	0	0	Q0
1	1	0	0	0	1	Q1
2	1	0	0	1	0	Q2
3	1	0	0	1	1	Q3
4	1	0	1	0	0	Q4
5	1	0	1	0	1	Q5
6	1	0	1	1	0	Q6
7	1	0	1	1	1	Q7
8	1	1	0	0	0	Q8
9	1	1	0	0	1	Q9
10	1	1	0	1	0	Q10
11	1	1	0	1	1	Q11
12	1	1	1	0	0	Q12
13	1	1	1	0	1	Q13
14	1	1	1	1	0	Q14
15	1	1	1	1	1	Q15

Реализуйте декодер 4 \rightarrow 16, используя декодеры $1\rightarrow$ 2 și $3\rightarrow$ 8.

Реализуйте декодер $5 \rightarrow 32$, используя декодеры $2 \rightarrow 4$.