Software Design Techniques and Mechanisms

Topic: Structural Design Patterns

Presenter: Drumea Vasile

Chisinau 2021

Overview

e The Structural Design Patterns are concerned with the ways of composing
classes and objects into complex structures.
e This group can be divided into 2 groups:
o Structural Class patterns (using inheritance)

o Structural Object patterns (using composition)

2 I e

Adapter Pattern

e It lets classes work together, that couldn’t otherwise because of
incompatible parent classes.

e Aka Wrapper.

3 Gl =

The UML Diagram for Class Adapter

Chent

l-l Target Adaptee
Requesty() SpecificRequest()
(implementation)
Adapter
_______ " ™~
Request() O -~ 1 SpecificRequest()

Gz

The UML Diagram for Object Adapter

Client '-I Target —'J Adaptee
Requesty() SpecificRequest()
adaplee
Adapter
___________ N ™~
Request() O adaptee->SpecificRequest()

5 Gl =

Bridge Pattern

e Separates an object’s abstraction from its implementation so that these
two levels could vary independently.

e Separate an inheritance hierarchy into 2 smaller hierarchies and using
composition to connect them, this acting as the bridge between them.

e Use it when you have 2 orthogonal dimensions.

6 Gz

The UML Diagram for Bridge

[) imp ..l

Abstraction > Implementor

Operation() @ Operationimp()

S imp->()perationlmpﬂ *
l I
N ConcretelmplementorA ConcretelmplementorB
RefinedAbstraction
Operationimp() Operationimp()

7 @ML s T

Composite Pattern

e Atree structure of simple and complex objects.

e |t lets clients treat simple and complex objects uniformly.

8 ez

The UML Diagram for Composite

Client |——p Component L.,.

Operation(}
Add(Component)
Remove({Component)
GetChild{int)

A

I I

Leaf Composite

children

. o forall g in children
Operation() SPEION]) S-S ——— g‘o%e,a,,m“:

Add(Component)
Remove(Component)
GetChild(int)

9 @ML s T

Decorator Pattern

e Add responsibilities to objects dynamically.

e Wrap the plain object into a specific decorator.

10 I e

The UML Diagram for Decorator

Component -
Operation()
[l com
ponent
ConcreteComponent Decorator
Operation() ODIEUAND) O [= i sosion o o tine s v v i e o 0 s . component->0peration<)ﬂ
| |
ConcreteDecoratorA ConcreteDecoratorB
Decorator;:Operation();
Operation() Operation() O-==-==q4======4 AddedBenavorl).' 0
AddedBehavior()
addedState

11 I e

Facade Pattern

e Provides a unified interface that represents multiple components.

e Wraps a complex sub-system with a simple abstraction.

12 I e

The UML Diagram for Facade

Facade

e

13 I e

Flyweight Pattern

e Use sharing to support large numbers of fine grained objects efficiently.
e Each “flyweight” object is divided into two parts:
o Extrinsic: state dependent part.

o Intrinsic: state independent part.

14 ez

The UML Diagram for Flyweight

f h
FlyweightFactory Olywelg - .J Flyweight
GetFlyweight(key) ¢ Operation(extrinsicState)
1 N
I

) else {
add
)

if (yweight{key] exists) {
return existing flyweight;

create new flyweight;

it to pool of fiyweights,

retum the new flyweignt;

ConcreteFlyweight

UnsharedConcreteFlyweight

Operation(extrinsicState)

Operation(extrinsicState)

IntrinsicState

allState

Client

15

ok

UNIVERSITATEA TEHNICA
AMOLDOVEI

Proxy Pattern

e An object representing another object.
e Control the access to an object by wrapping it into another.

e Encapsulate the protected object in the proxy.

16 ez

The UML Diagram for Proxy

Request()

Subject
Request()
RealSubject reaiSubject Proxy

Requesy() ©-

ﬁialSub;ect ~->»>Request();

Here's a possible object diagram of a proxy structure at run-time:

S s
aClient fﬁ
subject . aProxy
~_ realSubject &

aRealSubject |

17

ok

UNIVERSITATEA TEHNICA
AMOLDOVEI

References

1. https://sourcemaking.com/design_patterns/structural_patterns

2. The “Gang of four”, 1994, Design Patterns: Elements of Reusable Object-Oriented
Software

3. PS.Al the diagrams are from [2].

18 I e

https://sourcemaking.com/design_patterns/structural_patterns

Thanks for your attention!
Questions?

