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Overview

e The Structural Design Patterns are concerned with the ways of composing
classes and objects into complex structures.
e This group can be divided into 2 groups:
o Structural Class patterns (using inheritance)

o Structural Object patterns (using composition)
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Adapter Pattern

e It lets classes work together, that couldn’t otherwise because of
incompatible parent classes.

e Aka Wrapper.

3 Gl =



The UML Diagram for Class Adapter
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The UML Diagram for Object Adapter

Client '-I Target —'J Adaptee
Requesty() SpecificRequest()
adaplee
Adapter
___________ N ™~
Request() O adaptee->SpecificRequest()

5 Gl =



Bridge Pattern

e Separates an object’s abstraction from its implementation so that these
two levels could vary independently.

e Separate an inheritance hierarchy into 2 smaller hierarchies and using
composition to connect them, this acting as the bridge between them.

e Use it when you have 2 orthogonal dimensions.
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The UML Diagram for Bridge
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Composite Pattern

e Atree structure of simple and complex objects.

e |t lets clients treat simple and complex objects uniformly.
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The UML Diagram for Composite

Client |——p Component L.,.

Operation(}
Add(Component)
Remove({Component)
GetChild{int)

A

I I

Leaf Composite

children

. o forall g in children
Operation() SPEION]) S-S ——— g‘o%e,a,,m“:

Add(Component)
Remove(Component)
GetChild(int)

9 @ML s T



Decorator Pattern

e Add responsibilities to objects dynamically.

e Wrap the plain object into a specific decorator.
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The UML Diagram for Decorator
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Facade Pattern

e Provides a unified interface that represents multiple components.

e Wraps a complex sub-system with a simple abstraction.
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The UML Diagram for Facade
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Flyweight Pattern

e Use sharing to support large numbers of fine grained objects efficiently.
e Each “flyweight” object is divided into two parts:
o Extrinsic: state dependent part.

o Intrinsic: state independent part.
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The UML Diagram for Flyweight
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Proxy Pattern

e An object representing another object.
e Control the access to an object by wrapping it into another.

e Encapsulate the protected object in the proxy.
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The UML Diagram for Proxy
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Thanks for your attention!
Questions?



