II АРИФМЕТИЧЕСКИЕ ОСНОВЫ ЦИФРОВЫХ АВТОМАТОВ

ТЕМА 3 СИСТЕМЫ СЧИСЛЕНИЯ И КОДЫ

Под системой счисления понимается совокупность правил представления чисел посредством ограниченного количества символов.

Система счисления является позиционной если вес (значение) каждой цифры определяется позицией соответствующей цифры в представлении числа.

Система счистления	Основание	Цифры
Десятичная	10	0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Шестнадцатер ичная	16	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
Двоичная	2	0, 1

• В случае непозиционных систем счисления, вес каждой цифры не зависит от позиции занимаемой в представлении числа.

Римская

I, V, X, L, C, D, M

• VI=V+I=6,

IV=V-I=4.

Пример: 1735.28

10 ³	10 ²	10 ¹	10°	10-1	10-2
1	7	3	5	2	8
1000	700	30	5	0.2	0.08

1000+700+30+5+0.2+0.08=1735.28

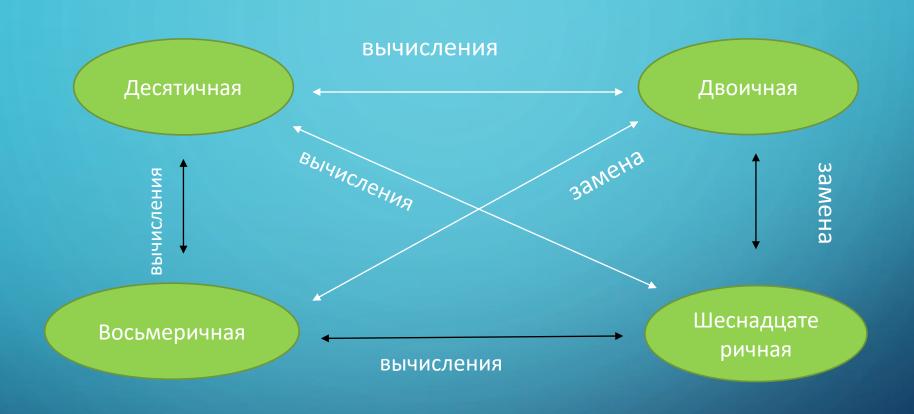
Системы счисления используемые в области цифровых систем

Двоичная

$$B = \{0,1\}$$

Восьмеричная

$$b = 8 = 2^3$$


$$O=\{0,1,2,3,4,5,6,7\}$$

Шестнадцатеричная

$$B=16=24$$

$$79_{10} = 1001111_2 = 117_8 = 4F_{16}$$

Преобразование из одной системы счисления в другую

Десятичная

вычисления

Двоичная

Целые числа

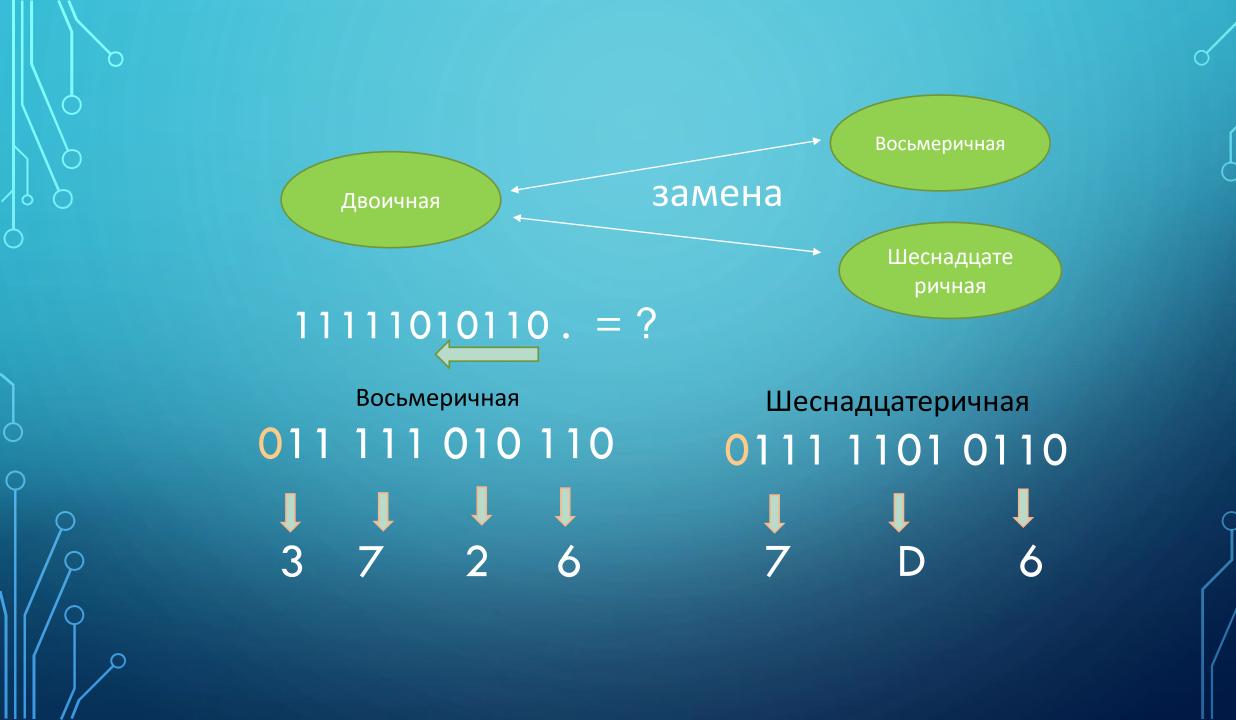
$$19_{10} = 10011_2$$

$$9:2=4$$
 rest 1

$$4:2=2$$
 rest 0

Дробные числа

$$0.86_{10} = 0.01010_2$$


$$0.36*2 =$$

$$0.72*2 = 1.44$$

$$0.44*2 =$$

$$0.88*2 =$$

$$0.76*2 =$$

Примеры

1.
$$100_{(10)} = ?_{(2)} = ?_{(8)} = ?_{(16)}$$

Характеристики позиционных систем счисления

- 1. Алфавит используемые символы
- 2. Основание (b) кол-во символов
- 3. Представление

Десятичная точка

$$N_b = d_{n-1}d_{n-2}d_{n-3}...d_1d_0 d_{-1}d_{-2}d_{-3}...d_{-m}$$

4. Вычисление значения $N_b = \sum_{i=-m}^{n-1} d_i \cdot b^i$

Двоично-десятичные коды

Характеристики

- 1. Использование: интерфейсы цифровых устройств
- 2. Кодируют десятичные цифры
- 3. Для 10 цифр требуется 4 бита: $2^3 < 10 < 2^4$
- 4. Требуется коррекция арифметических операций

		Взвешенны	Невзвешенные		
		самодоп			
	8421(BCD)	2421	86(-1)(-4)	Gray	2 из 5
0	0000	0000	0 0 0 0	0000	00011
1	0001	0001	0 1 1 1	0001	00101
2	0010	0010	0 1 0 1	0011	00110
3	0011	0011	1 0 1 1	0010	01001
4	0100	0100	1 0 0 1	0110	01010
5	0101	1011	0 1 1 0	0111	01100
6	0110	1100	0 1 0 0	0101	10001
7	0111	1101	1 0 1 0	0100	10010
8	1000	1110	1 0 0 0	1100	10100
9	1001	1111	1 1 1 1	1101	11000

Пример: Представление числа 9427 в двоичном и в двоично-десятичном коде 8421

```
В двоичном:
10010011010011 (14 делений на 2)
В 8421:
1001 0100 0010 0111 (замена)
9 4 2 7
```