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Digital Building Blocks

5 .1 INTRODUCTION

Up to this point, we have examined the design of combinational and
sequential circuits using Boolean equations, schematics, and HDLs. This
chapter introduces more elaborate combinational and sequential building
blocks used in digital systems. These blocks include arithmetic circuits,
counters, shift registers, memory arrays, and logic arrays. These building
blocks are not only useful in their own right, but they also demonstrate the
principles of hierarchy, modularity, and regularity. The building blocks are
hierarchically assembled from simpler components such as logic gates, mul-
tiplexers, and decoders. Each building block has a well-defined interface
and can be treated as a black box when the underlying implementation is
unimportant. The regular structure of each building block is easily
extended to different sizes. In Chapter 7, we use many of these building
blocks to build a microprocessor.

5 . 2 ARITHMETIC CIRCUITS

Arithmetic circuits are the central building blocks of computers.
Computers and digital logic perform many arithmetic functions: addi-
tion, subtraction, comparisons, shifts, multiplication, and division. This
section describes hardware implementations for all of these operations.

5 . 2 .1 Addition

Addition is one of the most common operations in digital systems. We
first consider how to add two 1-bit binary numbers. We then extend to
N-bit binary numbers. Adders also illustrate trade-offs between speed
and complexity.

Half Adder

We begin by building a 1-bit half adder. As shown in Figure 5.1, the half
adder has two inputs, A and B, and two outputs, S and Cout. S is the
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sum of A and B. If A and B are both 1, S is 2, which cannot be repre-
sented with a single binary digit. Instead, it is indicated with a carry out,
Cout, in the next column. The half adder can be built from an XOR gate
and an AND gate.

In a multi-bit adder, Cout is added or carried in to the next most sig-
nificant bit. For example, in Figure 5.2, the carry bit shown in blue is the
output, Cout, of the first column of 1-bit addition and the input, Cin, to
the second column of addition. However, the half adder lacks a Cin input
to accept Cout of the previous column. The full adder, described in the
next section, solves this problem.

Full Adder

A full adder, introduced in Section 2.1, accepts the carry in, Cin, as shown
in Figure 5.3. The figure also shows the output equations for S and Cout.

Carry Propagate Adder

An N-bit adder sums two N-bit inputs, A and B, and a carry in, Cin, to
produce an N-bit result, S, and a carry out, Cout. It is commonly called a
carry propagate adder (CPA) because the carry out of one bit propagates
into the next bit. The symbol for a CPA is shown in Figure 5.4; it is
drawn just like a full adder except that A, B, and S are busses rather
than single bits. Three common CPA implementations are called ripple-
carry adders, carry-lookahead adders, and prefix adders.

Ripple-Carry Adder

The simplest way to build an N-bit carry propagate adder is to chain
together N full adders. The Cout of one stage acts as the Cin of the next
stage, as shown in Figure 5.5 for 32-bit addition. This is called a ripple-
carry adder. It is a good application of modularity and regularity: the full
adder module is reused many times to form a larger system. The ripple-
carry adder has the disadvantage of being slow when N is large. S31
depends on C30, which depends on C29, which depends on C28, and so
forth all the way back to Cin, as shown in blue in Figure 5.5. We say that
the carry ripples through the carry chain. The delay of the adder, tripple,
grows directly with the number of bits, as given in Equation 5.1, where
tFA is the delay of a full adder.

(5.1)tripple � NtFA

S31

A30 B30

S30

A1 B1

S1

A0 B0

S0 

C30 C 29 C1 C0

Cout ++++

A31 B31

C in

Figure 5.5 32-bit ripple-carry adder

Schematics typically show
signals flowing from left to
right. Arithmetic circuits
break this rule because the
carries flow from right to
left (from the least signifi-
cant column to the most
significant column).
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Carry-Lookahead Adder

The fundamental reason that large ripple-carry adders are slow is that the
carry signals must propagate through every bit in the adder. A carry-
lookahead adder is another type of carry propagate adder that solves this
problem by dividing the adder into blocks and providing circuitry to
quickly determine the carry out of a block as soon as the carry in is
known. Thus it is said to look ahead across the blocks rather than waiting
to ripple through all the full adders inside a block. For example, a 32-bit
adder may be divided into eight 4-bit blocks.

Carry-lookahead adders use generate (G) and propagate (P) signals
that describe how a column or block determines the carry out. The ith
column of an adder is said to generate a carry if it produces a carry out
independent of the carry in. The ith column of an adder is guaranteed to
generate a carry, Ci, if Ai and Bi are both 1. Hence Gi, the generate sig-
nal for column i, is calculated as Gi � AiBi. The column is said to propa-
gate a carry if it produces a carry out whenever there is a carry in. The
ith column will propagate a carry in, Ci�1, if either Ai or Bi is 1. Thus,
Pi � Ai � Bi. Using these definitions, we can rewrite the carry logic for a
particular column of the adder. The ith column of an adder will generate
a carryout, Ci, if it either generates a carry, Gi, or propagates a carry in,
Pi Ci�1. In equation form,

(5.2)

The generate and propagate definitions extend to multiple-bit
blocks. A block is said to generate a carry if it produces a carry out
independent of the carry in to the block. The block is said to propagate a
carry if it produces a carry out whenever there is a carry in to the block.
We define Gi:j and Pi:j as generate and propagate signals for blocks span-
ning columns i through j.

A block generates a carry if the most significant column generates a
carry, or if the most significant column propagates a carry and the previ-
ous column generated a carry, and so forth. For example, the generate
logic for a block spanning columns 3 through 0 is

(5.3)

A block propagates a carry if all the columns in the block propagate the
carry. For example, the propagate logic for a block spanning columns 3
through 0 is

(5.4)

Using the block generate and propagate signals, we can quickly compute
the carry out of the block, Ci, using the carry in to the block, Cj.

(5.5)Ci � Gi:j � Pi:j Cj

P3:0 � P3 P2 P1 P0

G3:0 � G3 � P3 (G2 � P2 (G1 � P1 G0))

Ci � Ai Bi � (Ai � Bi) Ci�1 � Gi � Pi Ci�1
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Throughout the ages, people
have used many devices to
perform arithmetic. Toddlers
count on their fingers (and
some adults stealthily do too).
The Chinese and Babylonians
invented the abacus as early as
2400 BC. Slide rules, invented
in 1630, were in use until the
1970’s, when scientific hand
calculators became prevalent.
Computers and digital calcula-
tors are ubiquitous today.
What will be next?
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Figure 5.6(a) shows a 32-bit carry-lookahead adder composed of
eight 4-bit blocks. Each block contains a 4-bit ripple-carry adder and
some lookahead logic to compute the carry out of the block given the
carry in, as shown in Figure 5.6(b). The AND and OR gates needed to
compute the single-bit generate and propagate signals, Gi and Pi, from
Ai and Bi are left out for brevity. Again, the carry-lookahead adder
demonstrates modularity and regularity.

All of the CLA blocks compute the single-bit and block generate and
propagate signals simultaneously. The critical path starts with comput-
ing G0 and G3:0 in the first CLA block. Cin then advances directly to
Cout through the AND/OR gate in each block until the last. For a large
adder, this is much faster than waiting for the carries to ripple through
each consecutive bit of the adder. Finally, the critical path through the
last block contains a short ripple-carry adder. Thus, an N-bit adder
divided into k-bit blocks has a delay

(5.6)tCLA � tpg � tpg�block � � N
k

� 1 � tAND� OR � ktFA
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where tpg is the delay of the individual generate/propagate gates (a single
AND or OR gate) to generate P and G, tpg_block is the delay to find the gen-
erate/propagate signals Pi:j and Gi:j for a k-bit block, and tAND_OR is the
delay from Cin to Cout through the AND/OR logic of the k-bit CLA block.
For N � 16, the carry-lookahead adder is generally much faster than the
ripple-carry adder. However, the adder delay still increases linearly with N.

Example 5.1 RIPPLE-CARRY ADDER AND CARRY-LOOKAHEAD
ADDER DELAY

Compare the delays of a 32-bit ripple-carry adder and a 32-bit carry-lookahead
adder with 4-bit blocks. Assume that each two-input gate delay is 100 ps and
that a full adder delay is 300 ps.

Solution: According to Equation 5.1, the propagation delay of the 32-bit ripple-
carry adder is 32 � 300 ps � 9.6 ns.

The CLA has tpg � 100 ps, tpg_block � 6 � 100 ps � 600 ps, and tAND_OR � 2 �

100 ps � 200 ps. According to Equation 5.6, the propagation delay of the 32-bit
carry-lookahead adder with 4-bit blocks is thus 100 ps � 600 ps � (32/4 � 1) �

200 ps � (4 � 300 ps) � 3.3 ns, almost three times faster than the ripple-carry
adder.

Prefix Adder*

Prefix adders extend the generate and propagate logic of the carry-
lookahead adder to perform addition even faster. They first compute G
and P for pairs of columns, then for blocks of 4, then for blocks of 8,
then 16, and so forth until the generate signal for every column is
known. The sums are computed from these generate signals.

In other words, the strategy of a prefix adder is to compute the carry
in, Ci�1, for each column, i, as quickly as possible, then to compute the
sum, using

Si � (Ai � Bi) � Ci�1 (5.7)

Define column i � �1 to hold Cin, so G�1 � Cin and P�1 � 0. Then
Ci�1 � Gi�1:�1 because there will be a carry out of column i�1 if
the block spanning columns i�1 through �1 generates a carry. The
generated carry is either generated in column i�1 or generated in a
previous column and propagated. Thus, we rewrite Equation 5.7 as

Si � (Ai � Bi) � Gi�1:�1 (5.8)

Hence, the main challenge is to rapidly compute all the block generate
signals G�1:�1, G0:�1, G1:�1, G2:�1, . . . , GN�2:�1. These signals, along
with P�1:�1, P0:�1, P1:�1, P2:�1, . . . , PN�2:�1, are called prefixes.

5.2 Arithmetic Circuits 237

Early computers used ripple
carry adders, because
components were expensive
and ripple carry adders used
the least hardware. Virtually
all modern PCs use prefix
adders on critical paths,
because transistors are now
cheap and speed is of great
importance.
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Figure 5.7 shows an N � 16-bit prefix adder. The adder begins
with a precomputation to form Pi and Gi for each column from Ai and
Bi using AND and OR gates. It then uses log2N � 4 levels of black
cells to form the prefixes of Gi:j and Pi:j. A black cell takes inputs from
the upper part of a block spanning bits i:k and from the lower part
spanning bits k�1:j. It combines these parts to form generate and
propagate signals for the entire block spanning bits i:j, using the
equations.

(5.9)

(5.10)

In other words, a block spanning bits i:j will generate a carry if the
upper part generates a carry or if the upper part propagates a carry gen-
erated in the lower part. The block will propagate a carry if both the

Pi:j �  Pi:k Pk�1:j

Gi:j �  Gi:k �  Pi:k Gk�1:j
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upper and lower parts propagate the carry. Finally, the prefix adder com-
putes the sums using Equation 5.8.

In summary, the prefix adder achieves a delay that grows logarith-
mically rather than linearly with the number of columns in the adder.
This speedup is significant, especially for adders with 32 or more bits,
but it comes at the expense of more hardware than a simple carry-
lookahead adder. The network of black cells is called a prefix tree.

The general principle of using prefix trees to perform computations
in time that grows logarithmically with the number of inputs is a power-
ful technique. With some cleverness, it can be applied to many other
types of circuits (see, for example, Exercise 5.7).

The critical path for an N-bit prefix adder involves the precomputation
of Pi and Gi followed by log2N stages of black prefix cells to obtain all the
prefixes. Gi�1:�1 then proceeds through the final XOR gate at the bottom
to compute Si. Mathematically, the delay of an N-bit prefix adder is

(5.11)

where tpg_prefix is the delay of a black prefix cell.

Example 5.2 PREFIX ADDER DELAY

Compute the delay of a 32-bit prefix adder. Assume that each two-input gate
delay is 100 ps.

Solution: The propagation delay of each black prefix cell, tpg_prefix, is 200 ps
(i.e., two gate delays). Thus, using Equation 5.11, the propagation delay of
the 32-bit prefix adder is 100 ps � log2(32) � 200 ps � 100 ps � 1.2 ns,
which is about three times faster than the carry-lookahead adder and eight
times faster than the ripple-carry adder from Example 5.1. In practice, the
benefits are not quite this great, but prefix adders are still substantially faster
than the alternatives.

Putting It All Together

This section introduced the half adder, full adder, and three types of
carry propagate adders: ripple-carry, carry-lookahead, and prefix adders.
Faster adders require more hardware and therefore are more expensive
and power-hungry. These trade-offs must be considered when choosing
an appropriate adder for a design.

Hardware description languages provide the � operation to specify
a CPA. Modern synthesis tools select among many possible implementa-
tions, choosing the cheapest (smallest) design that meets the speed
requirements. This greatly simplifies the designer’s job. HDL Example
5.1 describes a CPA with carries in and out.

tPA � tpg � log2N(tpg�prefix ) � tXOR

5.2 Arithmetic Circuits 239
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Verilog

module adder #(parameter N � 8)
(input  [N�1:0] a, b,
input cin,
output [N�1:0] s,
output cout);

assign {cout, s} � a � b � cin;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity adder is
generic (N: integer :� 8);
port (a, b: in STD_LOGIC_VECTOR(N�1 downto 0);

cin: in STD_LOGIC;
s: out STD_LOGIC_VECTOR(N�1 downto 0);

cout: out STD_LOGIC);
end;

architecture synth of adder is
signal result: STD_LOGIC_VECTOR(N downto 0);

begin
result  �� (“0” & a) � (“0” & b) � cin;
s �� result (N�1 downto 0);
cout �� result (N);

end;

HDL Example 5.1 ADDER

5 . 2 . 2 Subtraction

Recall from Section 1.4.6 that adders can add positive and negative
numbers using two’s complement number representation. Subtraction is
almost as easy: flip the sign of the second number, then add. Flipping the
sign of a two’s complement number is done by inverting the bits and
adding 1.

To compute Y � A � B, first create the two’s complement of B:
Invert the bits of B to obtain and add 1 to get . Add this
quantity to A to get . This sum can be per-
formed with a single CPA by adding with Cin � 1. Figure 5.9
shows the symbol for a subtractor and the underlying hardware for per-
forming Y � A � B. HDL Example 5.2 describes a subtractor.

5 . 2 . 3 Comparators

A comparator determines whether two binary numbers are equal or if
one is greater or less than the other. A comparator receives two N-bit
binary numbers, A and B. There are two common types of comparators.

A � B
Y �  A � B � 1 � A � B

�B � B � 1B

A B

–

Y
(a)

NN

N
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Y

A B

(b)
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Figure 5.9 Subtractor:

(a) symbol, (b) implementation
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Figure 5.8 Synthesized adder
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Verilog

module subtractor #(parameter N � 8)
(input [N�1:0] a, b,
output [N�1:0] y);

assign y � a � b;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity subtractor is
generic (N: integer :� 8);
port (a, b: in STD_LOGIC_VECTOR(N�1 downto 0);

y: out STD_LOGIC_VECTOR(N�1 downto 0));
end;

architecture synth of subtractor is
begin
y �� a � b;

end;

HDL Example 5.2 SUBTRACTOR

An equality comparator produces a single output indicating whether A is
equal to B (A �� B). A magnitude comparator produces one or more
outputs indicating the relative values of A and B.

The equality comparator is the simpler piece of hardware. Figure
5.11 shows the symbol and implementation of a 4-bit equality compara-
tor. It first checks to determine whether the corresponding bits in each
column of A and B are equal, using XNOR gates. The numbers are
equal if all of the columns are equal.

Magnitude comparison is usually done by computing A � B and
looking at the sign (most significant bit) of the result, as shown in Figure
5.12. If the result is negative (i.e., the sign bit is 1), then A is less than B.
Otherwise A is greater than or equal to B.

HDL Example 5.3 shows how to use various comparison operations.
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Figure 5.11 4-bit equality
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(b) implementation
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Verilog

module comparators # (parameter N � 8)
(input [N�1:0] a, b,
output eq, neq,
output lt, lte,
output gt, gte);

assign eq � (a �� b);
assign neq � (a !� b);
assign lt � (a � b);
assign lte � (a �� b);
assign gt � (a � b);
assign gte � (a �� b);

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
entity comparators is
generic (N: integer :� 8);
port (a, b: in STD_LOGIC_VECTOR(N�1 downto 0);

eq, neq, lt,
lte, gt, gte: out STD_LOGIC);

end;

architecture synth of comparators is
begin
eq �� ‘1’ when (a � b) else ‘0’;
neq �� ‘1’ when (a /� b) else ‘0’;
lt �� ‘1’ when (a � b) else ‘0’;
lte �� ‘1’ when (a �� b) else ‘0’;
gt �� ‘1’ when (a � b) else ‘0’;
gte �� ‘1’ when (a �� b) else ‘0’;

end;

HDL Example 5.3 COMPARATORS

5 . 2 . 4 ALU

An Arithmetic/Logical Unit (ALU) combines a variety of mathematical
and logical operations into a single unit. For example, a typical ALU
might perform addition, subtraction, magnitude comparison, AND, and
OR operations. The ALU forms the heart of most computer systems.

Figure 5.14 shows the symbol for an N-bit ALU with N-bit inputs
and outputs. The ALU receives a control signal, F, that specifies which
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function to perform. Control signals will generally be shown in blue to
distinguish them from the data. Table 5.1 lists typical functions that the
ALU can perform. The SLT function is used for magnitude comparison
and will be discussed later in this section.

Figure 5.15 shows an implementation of the ALU. The ALU con-
tains an N-bit adder and N two-input AND and OR gates. It also
contains an inverter and a multiplexer to optionally invert input B when
the F2 control signal is asserted. A 4:1 multiplexer chooses the desired
function based on the F1:0 control signals.

5.2 Arithmetic Circuits 243
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Figure 5.15 N-bit ALU

Table 5.1 ALU operations

F2:0 Function

000 A AND B

001 A OR B

010 A � B

011 not used

100 A AND 

101 A OR 

110 A � B

111 SLT

B

B
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More specifically, the arithmetic and logical blocks in the ALU
operate on A and BB. BB is either B or , depending on F2. If F1:0 � 00,
the output multiplexer chooses A AND BB. If F1:0 � 01, the ALU
computes A OR BB. If F1:0 � 10, the ALU performs addition or subtrac-
tion. Note that F2 is also the carry in to the adder. Also remember that

in two’s complement arithmetic. If F2 � 0, the ALU com-
putes A � B. If F2 � 1, the ALU computes .

When F2:0 � 111, the ALU performs the set if less than (SLT) opera-
tion. When A � B, Y � 1. Otherwise, Y � 0. In other words, Y is set to
1 if A is less than B.

SLT is performed by computing S � A � B. If S is negative (i.e., the
sign bit is set), A � B. The zero extend unit produces an N-bit output by
concatenating its 1-bit input with 0’s in the most significant bits. The
sign bit (the N�1th bit) of S is the input to the zero extend unit.

Example 5.3 SET LESS THAN

Configure a 32-bit ALU for the SLT operation. Suppose A � 2510 and B � 3210.
Show the control signals and output, Y.

Solution: Because A � B, we expect Y to be 1. For SLT, F2:0 � 111. With F2 � 1,
this configures the adder unit as a subtractor with an output, S, of 2510 � 3210 �

�710 � 1111 . . . 10012. With F1:0 � 11, the final multiplexer sets Y � S31 � 1.

Some ALUs produce extra outputs, called flags, that indicate infor-
mation about the ALU output. For example, an overflow flag indicates
that the result of the adder overflowed. A zero flag indicates that the
ALU output is 0.

The HDL for an N-bit ALU is left to Exercise 5.9. There are many
variations on this basic ALU that support other functions, such as XOR
or equality comparison.

5.2.5 Shifters and Rotators

Shifters and rotators move bits and multiply or divide by powers of 2. As
the name implies, a shifter shifts a binary number left or right by a specified
number of positions. There are several kinds of commonly used shifters:

� Logical shifter—shifts the number to the left (LSL) or right (LSR)
and fills empty spots with 0’s.

Ex: 11001 LSR 2 � 00110; 11001 LSL 2 � 00100

� Arithmetic shifter—is the same as a logical shifter, but on right shifts
fills the most significant bits with a copy of the old most significant
bit (msb). This is useful for multiplying and dividing signed numbers

A � B � 1 � A � B
B � 1 � �B

B
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(see Sections 5.2.6 and 5.2.7). Arithmetic shift left (ASL) is the same
as logical shift left (LSL).

Ex: 11001 ASR 2 � 11110; 11001 ASL 2 � 00100

� Rotator—rotates number in circle such that empty spots are filled
with bits shifted off the other end.

Ex: 11001 ROR 2 � 01110; 11001 ROL 2 � 00111

An N-bit shifter can be built from N N:1 multiplexers. The input is
shifted by 0 to N�1 bits, depending on the value of the log2N-bit select
lines. Figure 5.16 shows the symbol and hardware of 4-bit shifters. The
operators ��, ��, and ��� typically indicate shift left, logical shift
right, and arithmetic shift right, respectively. Depending on the value of
the 2-bit shift amount, shamt1:0, the output, Y, receives the input, A,
shifted by 0 to 3 bits. For all shifters, when shamt1:0 � 00, Y � A.
Exercise 5.14 covers rotator designs.

A left shift is a special case of multiplication. A left shift by N bits
multiplies the number by 2N. For example, 0000112 �� 4 � 1100002 is
equivalent to 310 � 24 � 4810.
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Figure 5.16 4-bit shifters: (a) shift left, (b) logical shift right, (c) arithmetic shift right

shamt1:0A3 A2 A1 A0

Y3

Y2

Y1

Y0

(a)

<<

S1:0

S1:0

S1:0

S1:0

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

2

4 4

2

(b)

A3 A2 A1 A0

Y3

Y2

Y1

Y0

shamt1:0

00

01

10

11

A3:0 Y3:0

shamt1:0

>>

S1:0

S1:0

S1:0

S1:0

00

01

10

11

00

01

10

11

00

01

10

11

2

4 4

2

(c)

A3 A2 A1 A0

Y3

Y2

Y1

Y0

shamt1:0

>>>

S1:0

S1:0

S1:0

S1:0

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

2

4 4

2

A3:0 Y3:0

shamt1:0

A3:0 Y3:0

shamt1:0

Chapter 05.qxd  1/27/07  10:27 AM  Page 245



An arithmetic right shift is a special case of division. An arithmetic
right shift by N bits divides the number by 2N. For example, 111002
��� 2 � 111112 is equivalent to �410/22 � �110.

5 . 2 . 6 Multiplication*

Multiplication of unsigned binary numbers is similar to decimal multipli-
cation but involves only 1’s and 0’s. Figure 5.17 compares multiplication
in decimal and binary. In both cases, partial products are formed by
multiplying a single digit of the multiplier with the entire multiplicand.
The shifted partial products are summed to form the result.

In general, an N � N multiplier multiplies two N-bit numbers and
produces a 2N-bit result. The partial products in binary multiplication
are either the multiplicand or all 0’s. Multiplication of 1-bit binary num-
bers is equivalent to the AND operation, so AND gates are used to form
the partial products.

Figure 5.18 shows the symbol, function, and implementation of a 4
� 4 multiplier. The multiplier receives the multiplicand and multiplier,
A and B, and produces the product, P. Figure 5.18(b) shows how partial
products are formed. Each partial product is a single multiplier bit (B3,
B2, B1, or B0) AND the multiplicand bits (A3, A2, A1, A0). With N-bit
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Figure 5.17 Multiplication:

(a) decimal, (b) binary

Figure 5.18 4 � 4 multiplier:

(a) symbol, (b) function,

(c) implementation
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operands, there are N partial products and N � 1 stages of 1-bit adders.
For example, for a 4 � 4 multiplier, the partial product of the first row
is B0 AND (A3, A2, A1, A0). This partial product is added to the shifted
second partial product, B1 AND (A3, A2, A1, A0). Subsequent rows of
AND gates and adders form and add the remaining partial products.

The HDL for a multiplier is in HDL Example 5.4. As with adders,
many different multiplier designs with different speed/cost trade-offs
exist. Synthesis tools may pick the most appropriate design given the
timing constraints.
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Verilog

module multiplier # (parameter N � 8)
(input [N�1:0] a, b,
output [2*N�1:0] y);

assign y � a * b;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity multiplier is
generic (N: integer :� 8);
port (a, b: in STD_LOGIC_VECTOR(N�1 downto 0);

y: out STD_LOGIC_VECTOR(2*N�1 downto 0));
end;

architecture synth of multiplier is
begin
y �� a * b;

end;

HDL Example 5.4 MULTIPLIER

5 . 2 .7 Division*

Binary division can be performed using the following algorithm for nor-
malized unsigned numbers in the range [2N�1, 2N�1]:

R � A
for i � N�1 to 0
D � R � B
if D � 0 then Qi � 0, R� � R // R � B
else Qi � 1, R� � D // R 	 B
if i =/ 0 then R � 2R�

The partial remainder, R, is initialized to the dividend, A. The divisor, B,
is repeatedly subtracted from this partial remainder to determine whether
it fits. If the difference, D, is negative (i.e., the sign bit of D is 1), then the
quotient bit, Qi, is 0 and the difference is discarded. Otherwise, Qi is 1,

Figure 5.19 Synthesized multiplier
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and the partial remainder is updated to be the difference. In any event,
the partial remainder is then doubled (left-shifted by one column), and

the process repeats. The result satisfies 

Figure 5.20 shows a schematic of a 4-bit array divider. The divider
computes A/B and produces a quotient, Q, and a remainder, R. The leg-
end shows the symbol and schematic for each block in the array divider.
The signal P indicates whether R � B is negative. It is obtained from the
Cout output of the leftmost block in the row, which is the sign of the
difference.

The delay of an N-bit array divider increases proportionally to N2

because the carry must ripple through all N stages in a row before the
sign is determined and the multiplexer selects R or D. This repeats for all
N rows. Division is a slow and expensive operation in hardware and
therefore should be used as infrequently as possible.

5 . 2 . 8 Further Reading

Computer arithmetic could be the subject of an entire text. Digital
Arithmetic, by Ercegovac and Lang, is an excellent overview of the
entire field. CMOS VLSI Design, by Weste and Harris, covers high-
performance circuit designs for arithmetic operations.

A
B

� �Q �
R
B�2

�(N�1)
.
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Figure 5.20 Array divider
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5 . 3 NUMBER SYSTEMS

Computers operate on both integers and fractions. So far, we have only
considered representing signed or unsigned integers, as introduced in
Section 1.4. This section introduces fixed- and floating-point number
systems that can also represent rational numbers. Fixed-point numbers
are analogous to decimals; some of the bits represent the integer part,
and the rest represent the fraction. Floating-point numbers are analo-
gous to scientific notation, with a mantissa and an exponent.

5.3.1 Fixed-Point Number Systems

Fixed-point notation has an implied binary point between the integer and
fraction bits, analogous to the decimal point between the integer and frac-
tion digits of an ordinary decimal number. For example, Figure 5.21(a)
shows a fixed-point number with four integer bits and four fraction bits.
Figure 5.21(b) shows the implied binary point in blue, and Figure 5.21(c)
shows the equivalent decimal value.

Signed fixed-point numbers can use either two’s complement or
sign/magnitude notations. Figure 5.22 shows the fixed-point representa-
tion of �2.375 using both notations with four integer and four fraction
bits. The implicit binary point is shown in blue for clarity. In sign/magni-
tude form, the most significant bit is used to indicate the sign. The two’s
complement representation is formed by inverting the bits of the
absolute value and adding a 1 to the least significant (rightmost) bit. In
this case, the least significant bit position is in the 2�4 column.

Like all binary number representations, fixed-point numbers are just a
collection of bits. There is no way of knowing the existence of the binary
point except through agreement of those people interpreting the number.

Example 5.4 ARITHMETIC WITH FIXED-POINT NUMBERS

Compute 0.75 � �0.625 using fixed-point numbers.

Solution: First convert 0.625, the magnitude of the second number, to fixed-
point binary notation. 0.625 	 2�1, so there is a 1 in the 2�1 column, leaving
0.625�0.5 � 0.125. Because 0.125 � 2�2, there is a 0 in the 2�2 column. Because
0.125 	 2�3, there is a 1 in the 2�3 column, leaving 0.125 � 0.125 � 0. Thus, there
must be a 0 in the 2�4 column. Putting this all together, 0.62510 � 0000.10102

Use two’s complement representation for signed numbers so that addition works
correctly. Figure 5.23 shows the conversion of �0.625 to fixed-point two’s com-
plement notation.

Figure 5.24 shows the fixed-point binary addition and the decimal equivalent for
comparison. Note that the leading 1 in the binary fixed-point addition of Figure
5.24(a) is discarded from the 8-bit result.
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Figure 5.21 Fixed-point notation

of 6.75 with four integer bits

and four fraction bits

(a) 01101100

(b) 0110.1100

(c) 22 + 21 + 2–1 + 2–2 = 6.75

Figure 5.22 Fixed-point

representation of �2.375:

(a) absolute value, (b) sign

and magnitude, (c) two’s

complement

(a) 0010.0110

(b) 1010.0110

(c) 1101.1010

Fixed-point number systems
are commonly used for bank-
ing and financial applications
that require precision but not
a large range.
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