Hardware Description Languages

4.1 INTRODUCTION

Thus far, we have focused on designing combinational and sequential
digital circuits at the schematic level. The process of finding an efficient
set of logic gates to perform a given function is labor intensive and error
prone, requiring manual simplification of truth tables or Boolean equa-
tions and manual translation of finite state machines (FSMs) into gates.
In the 1990, designers discovered that they were far more productive if
they worked at a higher level of abstraction, specifying just the logical
function and allowing a computer-aided design (CAD) tool to produce
the optimized gates. The specifications are generally given in a hardware
description language (HDL). The two leading hardware description lan-
guages are Verilog and VHDL.

Verilog and VHDL are built on similar principles but have different
syntax. Discussion of these languages in this chapter is divided into two
columns for literal side-by-side comparison, with Verilog on the left and
VHDL on the right. When you read the chapter for the first time, focus
on one language or the other. Once you know one, you’ll quickly master
the other if you need it.

Subsequent chapters show hardware in both schematic and HDL
form. If you choose to skip this chapter and not learn one of the HDLs,
you will still be able to master the principles of computer organization
from the schematics. However, the vast majority of commercial systems
are now built using HDLs rather than schematics. If you expect to do
digital design at any point in your professional life, we urge you to learn
one of the HDLs.

4.1.1 Modules

A block of hardware with inputs and outputs is called a module. An AND
gate, a multiplexer, and a priority circuit are all examples of hardware
modules. The two general styles for describing module functionality are

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Introduction
Combinational Logic

Structural Modeling

Sequential Logic

More Gombinational Logic

Finite State Machines

Parameterized Modules*

Testbenches
Summary
Exercises

Interview Questions

167

168 CHAPTER FOUR

Hardware Description Languages

bebhavioral and structural. Behavioral models describe what a module
does. Structural models describe how a module is built from simpler
pieces; it is an application of hierarchy. The Verilog and VHDL code in
HDL Example 4.1 illustrate behavioral descriptions of a module that
computes the Boolean function from Example 2.6, y = abc+abc + abc.
In both languages, the module is named sillyfunction and has three
inputs, a, b, and c, and one output, y.

HDL Example 41 COMBINATIONAL LOGIC

Verilog
module sillyfunction (input a, b, c,
output y);
assign y = ~a & ~b & ~c
a & ~b & ~c |
a&~b& c;

endmodule

VHDL

Tibrary IEEE; use IEEE.STD_LOGIC_1164.all;

entity sillyfunction is
port (a, b, c: in STD_LOGIC;
y: out STD_LOGIC);
end;

architecture synth of sillyfunction is

begin
A Verilog module begins with the module name and a listing y <= ((not a) and (not b) and (not c)) or
of the inputs and outputs. The assign statement describes (a and (not b) and (not ¢)) or
combinational logic. ~ indicates NOT, & indicates AND, and Y lo aml GieE) el et

| indicates OR.

Verilog signals such as the inputs and outputs are
Boolean variables (0 or 1). They may also have floating and
undefined values, as discussed in Section 4.2.8.

VHDL code has three parts: the 1ibrary use clause, the entity
declaration, and the architecture body. The 1ibrary use clause
is required and will be discussed in Section 4.2.11. The entity

declaration lists the module name and its inputs and outputs.
The architecture body defines what the module does.

VHDL signals, such as inputs and outputs, must have a
type declaration. Digital signals should be declared to be
STD_LOGIC type. STD_LOGIC signals can have a value of ‘0’ or
‘1’, as well as floating and undefined values that will be
described in Section 4.2.8. The STD_LOGIC type is defined in
the IEEE.STD_LOGIC_1164 library, which is why the library
must be used.

VHDL lacks a good default order of operations, so
Boolean equations should be parenthesized.

A module, as you might expect, is a good application of modularity.
It has a well defined interface, consisting of its inputs and outputs, and it
performs a specific function. The particular way in which it is coded is
unimportant to others that might use the module, as long as it performs
its function.

4.1.2 Language Origins

Universities are almost evenly split on which of these languages is taught
in a first course, and industry is similarly split on which language is pre-
ferred. Compared to Verilog, VHDL is more verbose and cumbersome,

4.1 Introduction 169

Verilog

Verilog was developed by Gateway Design Automation as a
proprietary language for logic simulation in 1984. Gateway
was acquired by Cadence in 1989 and Verilog was made an
open standard in 1990 under the control of Open Verilog
International. The language became an IEEE standard! in
1995 (IEEE STD 1364) and was updated in 2001.

VHDL

VHDL is an acronym for the VHSIC Hardware Description
Language. VHSIC is in turn an acronym for the Very High
Speed Integrated Circuits program of the US Department of
Defense.

VHDL was originally developed in 1981 by the Depart-
ment of Defense to describe the structure and function of
hardware. Its roots draw from the Ada programming lan-
guage. The IEEE standardized it in 1987 (IEEE STD 1076)
and has updated the standard several times since. The lan-
guage was first envisioned for documentation but was

quickly adopted for simulation and synthesis.

as you might expect of a language developed by committee. U.S. military
contractors, the European Space Agency, and telecommunications compa-
nies use VHDL extensively.

Both languages are fully capable of describing any hardware system,
and both have their quirks. The best language to use is the one that is
already being used at your site or the one that your customers demand.
Most CAD tools today allow the two languages to be mixed, so that dif-
ferent modules can be described in different languages.

4.1.3 Simulation and Synthesis

The two major purposes of HDLs are logic simulation and synthesis.
During simulation, inputs are applied to a module, and the outputs are
checked to verify that the module operates correctly. During synthesis,
the textual description of a module is transformed into logic gates.

Simulation

Humans routinely make mistakes. Such errors in hardware designs are
called bugs. Eliminating the bugs from a digital system is obviously impor-
tant, especially when customers are paying money and lives depend on the
correct operation. Testing a system in the laboratory is time-consuming.
Discovering the cause of errors in the lab can be extremely difficult,
because only signals routed to the chip pins can be observed. There is no
way to directly observe what is happening inside a chip. Correcting errors
after the system is built can be devastatingly expensive. For example,
correcting a mistake in a cutting-edge integrated circuit costs more than
a million dollars and takes several months. Intel’s infamous FDIV (floating
point division) bug in the Pentium processor forced the company to recall
chips after they had shipped, at a total cost of $475 million. Logic simula-
tion is essential to test a system before it is built.

! The Institute of Electrical and Electronics Engineers (IEEE) is a professional society
responsible for many computing standards including WiFi (802.11), Ethernet (802.3),
and floating-point numbers (754) (see Chapter 5).

The term “bug” predates the
invention of the computer.
Thomas Edison called the “lit-
tle faults and difficulties” with
his inventions “bugs” in 1878.

The first real computer bug
was a moth, which got caught
between the relays of the
Harvard Mark II electro-
mechanical computer in 1947.
It was found by Grace Hopper,
who logged the incident, along
with the moth itself and the
comment “first actual case of
bug being found.”

- - TR vy
oclnd ne e EFSEY]) v4s5 250570

Relay*20 QCune(F
s

(GRS

+2o] g biny founl.

Source: Notebook entry cour-
tesy Naval Historical Center,
US Navy; photo No. NII
96566-KN

170 CHAPTER FOUR

Figure 4.1 Simulation waveforms

Figure 4.2 Synthesized circuit

Hardware Description Languages

Now: 0 160 320 480 64 800
ns ns ns

800 ns [N REENR RN RN

dla 0

&b 0 |

3llc (N O O

oly 0

Figure 4.1 shows waveforms from a simulation? of the previous
sillyfunction module demonstrating that the module works correctly.
y is TRUE when a, b, and ¢ are 000, 100, or 101, as specified by the
Boolean equation.

Synthesis

Logic synthesis transforms HDL code into a netlist describing the hard-
ware (e.g., the logic gates and the wires connecting them). The logic syn-
thesizer might perform optimizations to reduce the amount of hardware
required. The netlist may be a text file, or it may be drawn as a
schematic to help visualize the circuit. Figure 4.2 shows the results of
synthesizing the sillyfunction module.> Notice how the three three-
input AND gates are simplified into two two-input AND gates, as we
discovered in Example 2.6 using Boolean algebra.

Circuit descriptions in HDL resemble code in a programming
language. However, you must remember that the code is intended to
represent hardware. Verilog and VHDL are rich languages with many
commands. Not all of these commands can be synthesized into hard-
ware. For example, a command to print results on the screen during sim-
ulation does not translate into hardware. Because our primary interest is

v

und_y

?

un8_y

2 The simulation was performed with the Xilinx ISE Simulator, which is part of the Xilinx
ISE 8.2 software. The simulator was selected because it is used commercially, yet is freely
available to universities.

3 Synthesis was performed with Synplify Pro from Synplicity. The tool was selected
because it is the leading commercial tool for synthesizing HDL to field-programmable
gate arrays (see Section 5.6.2) and because it is available inexpensively for universities.

